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Abstract—Bug bounties have become increasingly popular in
recent years. This paper discusses bug bounties by framing these
theoretically against so-called platform economy. Empirically the
interest is on the disclosure of web vulnerabilities through the
Open Bug Bounty (OBB) platform between 2015 and late 2017.
According to the empirical results based on a dataset covering
nearly 160 thousand web vulnerabilities, (i) OBB has been
successful as a community-based platform for the dissemination
of web vulnerabilities. The platform has also attracted many
productive hackers, (ii) but there exists a large productivity gap,
which likely relates to (iii) a knowledge gap and the use of auto-
mated tools for web vulnerability discovery. While the platform
(iv) has been exceptionally fast to evaluate new vulnerability
submissions, (v) the patching times of the web vulnerabilities
disseminated have been long. With these empirical results and
the accompanying theoretical discussion, the paper contributes
to the small but rapidly growing amount of research on bug
bounties. In addition, the paper makes a practical contribution
by discussing the business models behind bug bounties from the
viewpoints of platforms, ecosystems, and vulnerability markets.

Index Terms—vulnerability disclosure, vulnerability reward
program, bug hunting, bug challenge, open bug bounty, security
patching, web vulnerability, cross-site scripting, XSS, CSRF

I. INTRODUCTION

Bug bounties have become increasingly popular in recent
years. As a testimony of the popularity, even the United States
Department of Defense (DoD) recently piloted a bug bounty
program, which further led to a partnership with a crowd-
sourcing bug bounty platform [8, 10]. Despite of the popu-
larity, bug bounties are surrounded by many unanswered and
controversial questions. These questions range from monetary
incentives and ethical practices to the fundamental question of
whether bug bounties actually help at improving security.

Motivated by the many unanswered questions, this paper
examines the vulnerability disclosure dynamics on the one-
sided OBB platform that was launched in 2015 based on
the older volunteer-driven XSSPosed platform [12].1 The
term vulnerability disclosure frames the scope of the paper:
the primary focus is on the dissemination of vulnerabilities
through the OBB platform to the vendors affected by the
vulnerabilities. The term one-sided is used to emphasize that

1 The paper covers a period from the platform’s initial launch to late 2017.
As is typical to current bug bounty platforms, the underlying business models
are constantly changing [31, 60]. For instance, OBB recently started to gear
itself toward managing vendors’ bug bounty programs, while also permitting
the submission of new types of web vulnerabilities. Despite of these changes,
most of what is being discussed apply also to the situation in mid-2018.

OBB is mostly a community-based platform that neither pays
for the vulnerabilities disseminated nor explicitly engages with
vendors through a subscription model. As will be shown, both
terms are important for a theoretical framing of bug bounties.

The paper’s main empirical findings, theoretical points, and
contributions can be summarized and generalized as follows:

• Bug bounty platforms in general align well with the
theories about network effects and platform economy.

• However, when excluding the crowd-sourcing elements,
innovation seems limited from a business perspective;
most current bug bounties mimic the business models that
have been used already in the older vulnerability markets.

• One-sided bug bounty platforms for web vulnerabilities
represent an interesting case of comparison to two-sided
bug bounty platforms such as HackerOne and the older
platforms such as the notorious Zero Day Initiative (ZDI).

• In terms of the mere volume of software vulnerabilities
disseminated, bug bounties can be successful without
monetary compensations, although the lack of compensa-
tions tends to intensify the focus on quantity over quality.

• Only a relatively few participants disclose most of the
web vulnerabilities disseminated through bug bounties.

• Automated tools for web vulnerability discovery are used
also in the bug bounty context, and this automation
presumably influences the websites targeted and affected.

• In addition to the productivity gap between participants,
the use of automated tools can create knowledge gaps
even with respect to a single type of web vulnerabilities.

• The evaluation of new submissions can be rapid in the
context of simple web vulnerabilities, although it remains
an open question of how well the vulnerabilities dissem-
inated are coordinated and communicated to vendors.

• Patching of vulnerabilities by the vendors affected takes
a relatively long time also in terms of low-impact web
vulnerabilities often disseminated through bug bounties.

• Patching times vary across both participants and vendors,
but learning from the past disseminated vulnerabilities
seems limited; the reputation of a bug bounty is likely a
more important factor affecting the patching times.
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Three additional remarks are required about the terms used.
First and foremost: there exists no established terminology
to describe the current crowd-sourcing patterns for vulner-
ability discovery and disclosure. Bug bounties, vulnerability
reward programs, security challenges, vulnerability hunting
campaigns, and related terms are used more or less inter-
changeably to describe the same phenomenon [39]. Through-
out this paper, the term bug bounty is used in the same loose
sense. Second, the term (white hat) hacker is used for referring
to individual participants in bug bounties. Because particularly
criminology research has started to equate hackers with com-
puter crime [32], the term security researcher often used in
the industry would be a slightly better choice. Nevertheless,
both terminology choices are justifiable due to the concrete
connections to the current security industry—the term bounty
appears in the OBB abbreviation and the term hacker in the
name of the likely most famous current bug bounty platform,
HackerOne. Last but not least, the term vendor is often used to
refer to “any producer of software, regardless of whether or
not that software is sold commercially” [57]. In this paper,
however, vendors are equated to domain names that have
hosted the websites affected by the vulnerabilities observed.

The last point requires a further comment. The owner of
a domain may not be the same party who is responsible
for the website(s) hosted from the domain. In fact, the re-
mediation of some web vulnerabilities may involve domain
name registrants, webmasters, hosting providers, and even
Internet service providers [70]. In theory, the same may apply
to the disclosure of web vulnerabilities. As the bug bounty
platform examined does not provide information about the
actual vendor-side individuals who were contacted about the
vulnerabilities, domain names provide a sensible simplifica-
tion, however. As will be elaborated, questions related to
contact persons differentiate also many bug bounty platforms.

Bug bounties are a challenging research topic. There is at
the same time a limited but growing amount of existing re-
search to build upon [22], and a large amount of loosely related
research on vulnerabilities. In terms of scholarly disciplines,
relevant contributions have been made in computer science and
software engineering, information systems research, and what
has been branded as (cyber) security economics [4]. In order
to maintain this interdisciplinary focus, the remainder of this
paper proceeds by first discussing the background in Section II
from a socio-technical perspective. This theoretical discussion
is used to also motivate the empirical case study presented in
Section III. The empirical findings, theoretical points, and few
practical insights are discussed in the final Section IV.

II. BACKGROUND

The following discussion will outline the background by
considering some similarities and differences between current
bug bounties and the older vulnerability markets. Even though
formal economic models have been proposed for approaching
bug bounties [9], the theoretical tone adopted for the discus-
sion is more informal, drawing from the platform literature.

A. Bug Bounties

The history of bug bounties traces to the early 2000s
emergence of commercial vulnerability disclosure programs
and different security alerting services. The perhaps most
memorable example is the TippingPoint’s Zero Day Initiative
that was launched already in 2005. This still active program
relies on a business model that compensates hackers for
their vulnerability discoveries on one hand, and helps the
opt-in customers to patch their products on the other [4].
When reflected against the history of vulnerability disclosure
practices, the new element brought forward by ZDI and
related programs was the monetary compensations paid for
the vulnerabilities disseminated through the programs. These
monetary compensations were also a key element in the
emergence of crowd-sourced bug bounty programs in the early
2010s. There are currently two main variants of bug bounty
programs [22]. These are illustrated in Fig. 1. As a preparation
for the forthcoming theoretical discussion, the second variant
(B) is further broken down into two subvariants, B.1 and B.2.

Vendor xy

A. Direct Bug Bounty

Rewards

Bugs

Disclosure

Vendor Platform xy

B.1 Two-Sided Bug Bounty Platform

Rewards Rewards

BugsBugs

Disclosure Disclosure

Vendor Platform xy

B.2 One-Sided Bug Bounty Platform

Rewards

BugsBugs

Disclosure Disclosure

A.

B.

Fig. 1. Bug Bounty Variants

Direct bug bounty programs are nowadays orchestrated
by many vendors themselves. In fact, the concept of a (di-
rect) bug bounty is older than ZDI and related programs;
Netscape introduced the first known bug bounty already in
1995. Although also the Mozilla Foundation later adopted the
same approach, these early initiatives did not gain widespread
traction in the software industry. It was much later in the
early 2010s when direct bug bounties became commonplace
through the initiation of programs by many technology giants,
including Google, Microsoft, Facebook, and Yahoo, among
others. These bug finding contests directly orchestrated by
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technology companies themselves were also quickly adopted
for initiating different platforms (see [17] for the concept
of platform and related theory). HackerOne is currently the
perhaps most famous case of these bug bounty platforms.

B. Bug Bounty Platforms

Many of the two-sided platforms (B.1) rely on modified
versions of the business models that were used already in
ZDI and related programs. For instance, vendors subscribe to
HackerOne in order to improve the security of their software
products via security assessments carried out by hackers who
are compensated for their vulnerability discoveries. As with
ZDI and some later online marketplace endeavors [64], the
platform exploits a two-sided market; the platform enables two
distinct groups to interact and transact (security) information
according to their distinct needs [75]. Unlike the vulnerability
and security data feeds provided in ZDI and related programs,
however, HackerOne is a proactive rather than a reactive
service; vendors are explicitly exposing their products for
security assessments. For vendors, the service provided could
be even labeled as crowd-sourced penetration testing.

It is important to further remark that there is no need for
vendors to participate in order to avoid missing vulnerability
information. Consequently, many but not all [80] of the busi-
ness models lack the element of blackmailing that is implicitly
present in the ZDI-style programs [6]. Because vendors are the
paying customers, nevertheless, the revenue streams are still
comparable to those used by the older vulnerability brokers.

To some extent, the demarcation between the two main
theoretical types (A and B) has become slightly blurry as some
vendors have started to modify their direct bug bounties toward
the direction of platforms. For instance, Google extended its
bug bounty program in 2013 to cover also a few security-
critical open source software projects [77]. Analogously, a
few years later in 2016 the Mozilla Foundation launched a
fund to improve security in the open source domain [59]. This
initiative can be also considered a platform because the fund
is used to pay for security audits and vulnerability discoveries,
which are both coordinated through Mozilla. Moreover, bounty
systems have recently been expanded toward areas beyond
security. Possibly inspired by bug bounties and vulnerabil-
ity hunting, these two-sided crowd-sourcing platforms offer
monetary bounties for implementing new features and fixing
conventional (non-security) bugs [23, 36]. A further trend re-
lates to the arrival of different one-sided bug bounty platforms,
including the OBB platform studied later on in Section III.

Unlike the two-sided subvariants (B.1), these one-sided
platforms do not seek to monetize vendor involvement. Al-
though vendors are encouraged to provide voluntary com-
pensations [56], the one-sided platforms (B.2) do not ex-
plicitly pay for the vulnerabilities reported. In this sense,
these platforms are not pure vulnerability marketplaces on
which each vulnerability is a unit of trade [47]. Instead,
the one-sided subvariants provide community-based platforms
for hackers to report and disclose vulnerabilities they have
discovered. These characteristics imply that the ethos behind

the one-sided platforms is closer to the classical topics in
vulnerability disclosure. The absence of compelled monetary
compensations also implies that the rewards from participation
are intrinsic rather than extrinsic. Before proceeding to discuss
these rewards in more detail, it should be briefly noted that
the two subvariants share both similarities and dissimilarities
in terms of the basic theoretical premises for platform success.

C. Network Effects

A fundamental challenge for any platform orchestrator has
always related to the creation and maintenance of a critical
mass [55, 66]. This question is also well-understood among
the current bug bounty platform orchestrators. For instance,
many bug bounty websites market themselves by visible
announcements about the amount of vendors and hackers
who have participated, the amount of vulnerabilities reported
through the platform in question, the amount of compensations
paid, and so forth. These marketing techniques relate to the
concept of network effects [38], which can be further chopped
analytically into cross-side (or indirect) network effects and
direct (or one-side) network effects [30, 55, 66]. The former
effects mean that the value of participating on one side of a
platform depends on the amount of participants on the other
side. Thus, the more there are hackers participating on a two-
sided bug bounty platform, the more there are incentives for
vendors to also participate, and the other way around.

Similarly to dating platforms [75], say, these cross-side
network effects are also numerically asymmetric in two-sided
bug bounty platforms. For a platform orchestrator, one high-
profile vendor (such as Adobe or Intel—or DoD) is worth
a hundred hackers, in a manner of speaking. As the one-
sided platforms do not require explicit vendor participation on
the platforms, these cross-side network effects pose a bigger
challenge only for the two-sided bug bounty platforms.

The direct network effects refer to theoretical premises
in which the amount of participants on one side influences
the value for participation on this same side. Social media
platforms would be the prime example of such direct network
effects; there is only a small incentive to participate on a
social media platform unless there are already plenty of other
participants. For the two subvariants of bug bounty platforms,
there exist analogous challenges related to direct network
effects—a critical mass of hackers is required. Likewise, a
large amount of well-known vendors participating on a two-
sided bug bounty platform likely increases the likelihood that
also other vendors will join. Reputation and trust offer one way
to meet these requirements in the context of online markets for
vulnerabilities and related security items [3, 50, 64]. Different
rewards for the vulnerabilities reported provide another way
to attain and maintain a critical mass of participants.

D. Rewards

The concept of reward is important for better understanding
bug bounty platforms in particular. Five points are worth
making about the concept of reward in the bug bounty context.
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First, there are monetary rewards and non-monetary re-
wards [39]. Monetary rewards are the ones grabbing the
attention in popular discourse—the outlying payments that can
amount even up to a hundred thousand dollars make catchy
headlines in media. Although empirical research about the
money involved is regrettably limited, there are good reasons
to suspect that most monetary compensations are quite mod-
erate, however (see [2, 19, 58, 64, 80], though note also [29]).
Despite of the popularity of bug bounties, it seems fair to
also question whether a stable supply-demand equilibrium has
been reached in terms of the monetary compensations. The
history provides a rationale for this caution: the lack of clear
reference prices has been a continuing problem in the vulner-
ability markets [50, 64]. Furthermore, recent industry surveys
also indicate that monetary compensations are not commonly
expected from reporting vulnerabilities [71]. Therefore, it is
important to emphasize the role of non-monetary rewards.

The non-monetary rewards include everything from free-
lunch parties to t-shirts, but the most important factor re-
lates to the “acknowledgments in the security hall of fame
of the respective bounty program” [39]. Given that career
development is one intrinsic motivation for participating in
open source software development [13], having a name in
a security hall of fame may be a good abstract business
card when seeking employment in security companies [60].
For this reason, it should be noted that the importance of
acknowledgements is not limited only to bug bounty platforms;
also many companies that do not engage with bug bounties
maintain their own halls of fame. For instance, the Finnish
company Nokia maintains its own hall of fame for those who
have disclosed vulnerabilities in the company’s products [53],
although the company currently neither maintains a direct bug
bounty nor participates in two-sided platforms as a customer.

Second, there are non-monetary rewards that originate from
the collaboration between hackers participating on a platform.
When diverse members of a cohesive social group interact, the
shared interests typically facilitate knowledge sharing among
the members of the group [49, 54]. As bug bounty platforms
help at networking with colleagues [60], these may also
increase the competency of a member either through collab-
oration with other members or by learning from others [79].
By implication, such rewards are also related to direct network
effects; the larger the amount of participants, the more there
are opportunities for collaboration and learning. As is typical
to open source software development and online communi-
ties in general [44, 78], also different intrinsic incentives are
present [60]. These include abstract rewards related to social
approval, enjoyment and leisure time, intellectual stimulation,
and other sociological and psychological aspects.

Third, there are rewards for hackers, and costs and re-
wards for vendors. Orchestrating and maintaining a direct
bug bounty program is not free. Depending on a vendor’s
software portfolio and its size, already the maintenance costs
can be noteworthy. These and other related costs are an
important element in the business models behind many two-
sided bug bounty platforms. For vendors seeking to outsource

a portion of security assessments to a crowd, it is presumably
cheaper and easier to organize the outsourcing via a third-party
platform. Liability, communication, and related aspects likely
further increase the lucrativeness of two-sided platforms.

Unfortunately, no empirical research has been done to
examine the pricing of bug bounty platforms for vendors.
It can be noted that measuring the costs may not be easy
because there may be indirect costs in addition to the direct
participation expenses. For instance, a vendor who participates
in a bug bounty platform may be exposed to a deceptive
incentive to underinvest in other secure software engineering
practices [41], possibly due to the perceived cost-effectiveness
of bug bounties [19, 69]. That is, paying for vulnerabilities may
diminish resources from the prevention of vulnerabilities [15].
There is also lack of research on the rewards that two-
sided bug bounty platforms offer for vendors. To pinpoint
directions for further research in this regard, it can be noted
that besides security assurance itself, marketing and public
relations constitute a reward. When a vendor participates in
a popular and widely known two-sided platform such as
HackerOne, it also delivers a public statement that security
is taken seriously—regardless whether this is actually true.

Fourth, most current bug bounty platforms harness the
rewards for making their platforms profitable and lucrative
for both hackers and vendors. Taking cuts from transactions
was already a part of the older vulnerability brokerage models
(currently, HackerOne takes 20% of the monetary rewards of-
fered by vendors [28]). The harnessing extends also toward the
extrinsic and intrinsic rewards for the hackers. For achieving
and maintaining the critical mass, many bug bounty platforms
rely on so-called gamification techniques (for the concept of
gamification see, e.g., [24]). These techniques include metric-
based rankings and constantly updated dashboards, badges
for most productive hackers, and other commonly used social
reputation elements. Moreover, having a name in a platform’s
security hall of fame is not enough; it is encouraged to also
compete in a constantly updated dashboard [34]. As soon
discussed, it should be emphasized that both the extrinsic and
intrinsic rewards vary in terms of different vulnerability types.

Last, there exists an implicit societal reward. In theory,
bug bounties may reduce exploitable vulnerabilities stockpiled
by criminals and state-level actors, providing also pull-off
incentives that may decrease the probability of participating
on illegal underground platforms [2, 81]. The direct network
effects involved imply that an already reached critical mass
may be also educated and guided toward established security
practices, ethical codes of conduct, and more sophisticated
vulnerabilities. These points resonate with the classical but
still ongoing debates about software vulnerability markets
in general. Thus, depending on a viewpoint, the societal
reward may also be a liability: instead of working toward
the ultimate goal of improving software quality, bug bounties
may increase the stockpiling tendency and the exploitation of
vulnerabilities [8, 15, 39]. Given these fundamental problems,
it is important to emphasize that most current crowd-sourcing
bug bounty platforms target low-impact web vulnerabilities.
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E. Disclosure on Bug Bounty Platforms

The historical genesis behind the ZDI-like programs was
largely related to the altruistic motives in the 1990s full
disclosure movement [47]. These motives can be also seen
underneath the current bug bounty platforms. To recall, full
disclosure refers to a vulnerability disclosure practice via
which full technical details are released to the public, possibly
regardless whether a vendor was even contacted about the
vulnerabilities prior to the release. There were—and still are—
good reasons for hackers to prefer this type of vulnerability
disclosure. Among these is the reluctance of many vendors
to acknowledge and fix the vulnerabilities reported. An inter-
mediate actor is one way to address this problem and related
issues affecting the disclosure of software vulnerabilities.

Direct bug bounty programs share a key similarity with
the so-called direct disclosure practice through which hackers
and vendors communicate privately about the publication and
patching of vulnerabilities. This direct (or two-party) disclo-
sure practice [33] has historically been the most common way
to disclose vulnerabilities. Many of the alternative practices
were also formulated to overcome limitations affecting the
two-party direct disclosure type. These alternatives include the
full disclosure ideology, disclosure through computer emer-
gency response teams (CERTs), and the ZDI-like brokerage
solutions [10, 58]. The similarity between direct disclosure and
direct bug bounties relates to the absence of a middleman,
whether a commercial vulnerability broker or a CERT. How-
ever, there exists also a fundamental difference: with direct bug
bounties, vendors are well-prepared to handle vulnerabilities
disclosed to them. Whereas a classical direct disclosure of a
vulnerability may come out from the blue sky to a vendor, a
vulnerability disclosed through a direct bounty program is—or
at least should be—received by a dedicated contact team.

The current bug bounty platforms lean toward either the
direct disclosure practice or the hybrid brokerage models.
A key differentiating factor relates to a platform’s role in
coordinating the disclosure. If a platform takes a weak broker-
age position, the platform does not explicitly coordinate the
disclosure process between vendors and hackers; the process
cannot be outsourced to the bug bounty platform. For instance,
the primary way to handle disclosure on the HackerOne’s
platform is to directly disclosure information to vendors based
on the contact details provided by the platform. While there
is an additional service for helping hackers with the initial
handshaking [27], the service does not mean that HackerOne
would be the primary coordinator. Analogous point applies to
the OBB platform. In contrast, some bug bounties take a much
stronger brokerage position, handling all communication with
vendors on behalf of the hackers [60]. It should be noted that
some implicit mediation is still present even when explicit
brokerage is not implemented. Any bug bounty platform is
still implicitly present in the disclosure processes; already the
name of a platform may carry some authority for influencing
vendors’ behavior. When a vendor knows that a bug bounty
platform is involved, communication may be easier compared

to classical pure direct disclosure. This theoretical reasoning
is summarized with the cross-tabulation shown in Table I.

TABLE I
A TOPOLOGY OF DISCLOSURE BROKERAGE

Brokerage

Weak Strong

Platform Two-sided HackerOne ZDI

One-sided OBB Vulnerability Lab?

While different forms of brokerage may be implemented
in both one-sided and two-sided platforms, there is a key
difference between these two theoretical types with respect to
vulnerability disclosure—vendors are explicitly participating
on two-sided platforms as paying customers. Due to the lack
of explicit vendor-side engagement, vulnerability disclosure
is presumably more difficult to carry out through one-sided
platforms. A further differentiating factor relates to the type
of vulnerabilities disseminated through bug bounty platforms.

Bug bounties vary in terms of the types of vulnerabilities
typically disseminated. The hierarchy is usually clear in terms
of both extrinsic and intrinsic rewards: remote code execu-
tion vulnerabilities and related memory corruption issues are
usually at the top and web vulnerabilities at the bottom. Like
with vulnerability markets in general [1], this hierarchy also
influences the types of hackers who are likely to successfully
discover and disclose vulnerabilities. A bug bounty that targets
memory corruption vulnerabilities is likely to attract high-
skill professionals, whereas web vulnerabilities are easy to
discover even with moderate computing knowledge. This skill
gap likely contributes to the typical problems affecting vulner-
ability disclosure, including the frequent delays for vendors to
release patches to the security issues disclosed. The absence of
vendors’ participation and the context of web vulnerabilities
are important characteristics of the one-sided OBB platform.

III. A PRELIMINARY ANALYSIS OF A ONE-SIDED
PLATFORM FOR WEB VULNERABILITIES

In what follows, a preliminary empirical analysis is pre-
sented about the one-sided OBB platform based on a dataset
collected from the platform’s online website in October 2017.
The dataset analyzed contains 158794 web vulnerabilities.
Before proceeding to tackle this vast amount with descriptive
statistics, a brief discussion is necessary about the type of
vulnerabilities present in the dataset and the vulnerability
disclosure practices on the OBB platform. After this discus-
sion, the empirical analysis proceeds by first considering the
evolutionary and productivity aspects in relation to earlier
work done by Zhao, Grossklags, and associates (see [80] in
particular). The second part of the empirical analysis focuses
on the evaluation of new submissions and the time vendors (or,
rather, websites) take to patch the issues disclosed to them.
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A. Web Vulnerabilities and the OBB Platform

The OBB platform only permits the submission of cross-
site scripting (XSS) and cross-site request forgery (CSRF)
vulnerabilities. Ever since the initial surge in the early 2000s,
cross-site scripting bugs have continued to remain the likely
most common software vulnerability type [40, 67]. Although
there exists a myriad of different XSS vulnerabilities, the
essence is that an attacker injects malicious code to a benign
website, and this code is executed by the browser of another
user visiting the website (see [26] for a concise recent review
on XSS). Even though automated black box scanners are
presumably used also in the bug bounty context [1, 5, 45],
cross-site scripting vulnerabilities are also easy to discover
simply by browsing a website and inserting small blocks of
code to parts that require user input. In contrast to XSS, a
CSRF vulnerability exposes a weakness that may trigger a
client to make an unintended request (for the background see,
e.g., [14]). For instance: if a client is currently authenticated
to a website, a CSRF vulnerability may be exploited by luring
the client to click a forged link that makes an unwanted state
change, such as changing the client’s password.

In general, cross-site scripting vulnerabilities are much
more common than CSRF vulnerabilities. This point can be
shown also with the OBB dataset: only as little as 38 of the
vulnerabilities in the dataset dealt with CSRF. Thus, OBB is
very much a platform specialized to cross-site scripting vul-
nerabilities, just like its predecessor, XSSPosed, was explicitly.

The focus on XSS and CSRF vulnerabilities affects the
types of hackers who are likely to participate on the OBB
platform, but there are a couple of additional reasons why the
web context is important. First, the discovery of these web
vulnerabilities requires no intrusive testing techniques [68].
This point is important for a one-sided platform; reporting vul-
nerabilities found by intrusive techniques may easily expose a
platform to liability questions—after all, legal issues have not
been unheard-of also in the web vulnerability context [48, 81].
Likewise, the difficult ethical questions that surround some
bug bounties [15, 76] are a lesser concern in the OBB case.
Second, the dynamics of finding vulnerabilities are different.
The world wide web is an endless resource. By implication
and in contrast to some vendor-specific bug bounties [46, 81],
it cannot be assumed that finding new vulnerabilities would
get more difficult over time in the OBB case. Given that the
current size of the indexed world wide web is estimated to be
around five billion pages or more [73], there will always be
vulnerable websites to discover—and rediscover.

B. Disclosure on the OBB Platform

The OBB’s disclosure model is illustrated in Fig. 2 with four
abstract actor types and six events. Five of the events equate
to timestamps marked with a symbol τ . Various axioms could
be postulated for the possible ordering of these events, but, in
general, it suffices to note that at least τa ≤ τb ≤ τd always
holds, provided that all three events actually occur. While τa
and τb are always defined in the analytical model, the set

{τc, τd, τe} may be undefined. For instance, the timestamp τd
remains undefined in case a vendor never patches its website.

Vendor Platform xy

Subscribers

Disclose (τa)Notify (τb)

Inform (τc)

Coordinate

Patch (τd) Publish (τe)

Fig. 2. Disclosure on the OBB Platform (analytical sketch)

The process starts when a hacker discloses a vulnerabil-
ity to the platform (τa). As is typical in the vulnerability
context [61, 64], the platform orchestrator then carries out
an evaluation to rule out fake submissions, bugs that are
not actually vulnerabilities, and other false positives that are
typical menaces of bug bounties [42, 81]. After the evaluation
has been completed, either a customized message or a bulk
notification is send to the vendor (τb). This notification in-
cludes the contact details for reaching the hacker who made
the discovery and disclosed the vulnerability on the platform.

Thus,
TTE = τb − τa ≥ 0 (1)

defines a straightforward time-to-evaluate (TTE) metric. The
actual coordination is left for the two parties. If a vendor
acknowledges the notification, either explicitly or implicitly,
and the possibly required further coordination is successful,
the vendor likely also patches the vulnerability at time τd.
Provided that τd is defined, such that patching occurred, a
conventional metric [35], say time-to-patch (TTP), is given by

TTP = τd − τb ≥ 0. (2)

The model also includes a set of subscribers for whom
the OBB platform provides security information about the
vulnerabilities disclosed through the platform. Moreover, the
public disclosure on the platform occurs at τe based on the
discretion of a hacker. This assumption is theoretically impor-
tant. An intermediate actor may hold the decision to publish
vulnerability information in strong brokerage models [37], but
OBB leaves this decision to hackers. If a hacker decides not
to publish details, τe remains undefined. Given that many
of the intrinsic rewards depend on the availability of public
information, these cases are supposedly rare, however.

Finally, it should be noted that OBB follows the so-called
responsible disclosure [62] by providing a grace period before
hackers are allowed to disclose public information on the
platform. If a vendor patched a vulnerability, a 30 day grace
period is provided; otherwise a 90 day restraint is applied [56].
These lengths are comparable to current industry practices.
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C. Evolution

The initial evolution of a new platform provides a good
bird’s-eye view on the prospects for the future success of the
platform. The volume of vulnerabilities disseminated through a
bug bounty platform provides the most straightforward metric
to observe the evolution [80]. In addition, it is important
to consider the network effects; reaching a critical mass is
important early on. For a new two-sided bug bounty platform,
it is particularly important to promptly attract a group of well-
known vendors. As it is a common mistake to overemphasize
pricing aspects during the initial evolution of a platform [7],
the names of the vendors likely carry more weight than the
compensations paid by the vendors in the early stages. For
both two-sided and one-sided bug bounty platforms, a key
factor is also the initial amount of active hackers; when a
platform is able to attract a group of productive hackers early
on, the incentives may intensify for others to join. This direct
network effect is fostered by social media. Analogous to other
bug bounty platforms [34], also OBB relies heavily on social
media—in fact, a Twitter account is required for reporting
vulnerabilities on the platform. Given these basic premises for
network effects, Fig. 3 shows three key metrics on the monthly
evolution of the OBB platform during the period observed.
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Fig. 3. Three Key Metrics on the Initial Evolution of the OBB Platform

The volume of vulnerabilities disseminated and the amount
of unique domains that were affected by the vulnerabilities
both follow almost a perfectly linear trend. A peek at the

y-axes also reveals that only one XSS vulnerability was re-
ported for most of the domains. In fact, only about 26% of the
unique domains were affected by multiple vulnerabilities. This
observation is interesting because it would seem sensible to
hypothesize that finding one XSS vulnerability would increase
the probability of finding more. Given the social aspects of bug
bounties (see Subsection II-D), it could be also asserted that
when one hacker finds web vulnerabilities from a domain, the
probability would increase for others to also take a look at
the domain. This line of reasoning does not seem plausible
according to the results, however. As will be discussed later
on, the explanation likely relates to the use of automated tools.

The amount of unique hackers participating on the OBB
platform started to rapidly increase in the late 2015. After
this initial surge, the growth rate in the amount of new
participants has slowly started to decrease. Although the period
observed is too short for making definite conclusions, this
mild deceleration hints that there may be a saturation point
in terms of the global amount of hackers who are engaging
with bug bounties. Thus, a good hypothesis for further work
would be the examination of a potential S-shaped growth curve
that typically characterizes the diffusion dynamics of many
online platforms in general [7, 55]. Another point is that the
total amount of unique participants generally aligns rather well
with previous empirical observations about bug bounties.

Although the total of 703 unique hackers is much lower than
what has been observed for Chinese bug bounties [34, 79], the
amount is still comparable in magnitude to platforms such as
HackerOne [80]. There likely exists also a crossover effect;
hackers tend to switch from one bug bounty to another [46].
Such crossover effects were typical already in the older
vulnerability markets. For instance, a common speculation has
been the possibility to sell a vulnerability in one market and an
exploit for the vulnerability in another [64]. Likewise: direct,
full, or some other type of vulnerability disclosure may be
pursued only after a failed attempt to sell the vulnerability to
a broker. An analogous pattern may be present with respect to
bug bounties: if a hacker failed to obtain a compensation from
a two-sided bug bounty platform, she may decide to publish
the discovery on a community-based platform such as OBB.
Duplicate reports between platforms are also a real possibility.

D. Productivity

The little over seven hundred hackers who participated on
the OBB platform between 2015 and late 2017 disclosed
nearly 160 thousand XSS vulnerabilities. This amount is
substantial even when keeping in mind the low-profile of
cross-site scripting bugs. The volume is also so large that
the discoveries cannot have had happened through manual
inspection of websites. In other words, human intelligence is
generally important for finding security bugs [46], but human
intelligence may be even more important in terms of engi-
neering software solutions for automated (web) vulnerability
discovery. Manual source code inspection often works well for
finding new vulnerabilities [18, 20], but automatic scanning is
also a necessity insofar as the whole world wide web is the
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target. Although finding XSS bugs does not require extensive
knowledge as such, engineering automated scanners is another
thing. The resulting knowledge gap is one factor contributing
to the typically uneven distribution of web vulnerability disclo-
sures among hackers participating on a bug bounty platform.

For instance, the most productive hacker on the OBB
platform has disclosed over 23 thousand XSS vulnerabili-
ties. This amount is comparable in magnitude to what can
be reached with large-scale Internet scanning of cross-site
scripting vulnerabilities [43], especially since many websites
continue to remain vulnerable even after the corresponding
web vulnerabilities have been disclosed and reported [26, 68].
However, the overall consequences for a bug bounty platform
presumably remain similar irrespective of whether the vul-
nerability discoveries result from manual labor or automated
tools. Analogous to many online platforms in general, a long-
tailed probability distribution likely follows in terms of the per-
hacker amount of vulnerability disclosures made on a platform.

To examine this typical productivity gap further, Fig. 4
displays the cumulative distribution function (CDF) for the
per-hacker amount of vulnerabilities disclosed on the OBB
platform. The two distribution approximations visualized are
based on the classical estimation setup for examining so-called
power-laws [11, 25]. In addition to the apparent productivity
gap, there are three points worth making from the illustration.
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Fig. 4. Productivity of Hackers

First, the log-normal distribution seems to provide a slightly
better fit than the power-law one. From a purely empirical
point of view, this stylized fact is noteworthy because it differs
from previous observations about bug bounties [46, 79]. The
log-normal distribution is also more challenging to interpret
theoretically than a power-law distribution that can be attached
to theoretical constructs such as preferential attachment.

Second, the productivity gap causes a vulnerability for the
OBB platform. The same applies to most bug bounties [80].
If the OBB platform would lose some of the most productive
hackers, the volume of new vulnerabilities disseminated would
presumably decrease substantially. This risk is fostered by the
network effects that work also toward the reverse direction.
In other words: when a sufficiently large group of participants
abandon a platform, a second group of participants may follow.

In addition to providing incentives for the most productive
hackers to stay on board, it is important to consider means by
which the productivity of other hackers could be improved.
Given that about 19% of the unique hackers on the OBB
platform have disclosed just one vulnerability, which is fairly
typical for bug bounties [31], a further challenge relates to the
common question of how to transform the apparent one-shot
visitors into persistent users of the bug bounty platform.

Third, the uneven productivity has also other important
theoretical consequences. In particular, the gap implies that
merely increasing the volume of hackers is unlikely to sub-
stantially increase the volume of vulnerabilities disseminated.
This assumption runs in counter to the basic hypotheses often
made in the general platform literature [19, 75]. In the context
of web vulnerabilities, an analogous diversity tenet can be also
approached in terms of the websites and domains affected.
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Fig. 5. Productivity and Popularity of Websites

The popularity of the domains offers a simple way to
probe this kind of diversity. The basic hypothesis is that
hackers who are particularly productive would target more
popular domains and websites hosted from these domains,
while the rank and file hackers would focus on the less popular
domains [80]. The basic idea is sound. For instance, there is
still some prestige involved in discovering XSS vulnerabilities
from websites owned by Google or Netflix—or from online
banking sites for which even XSS can pose a real threat.
Following existing research [79, 80], the hypothesis can be
examined by plotting Alexa’s popularity ranks against different
productivity groups. The three groups used in Fig. 5 are
based on a simple classification: the “low” productivity group
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refers to hackers who have disclosed less than or equal
to the median of ten vulnerabilities per-hacker, the “high”
productivity group contains those who have disclosed more
than the 75th percentile of the per-hacker disclosures made,
and the “medium” group sets in-between these two groups.
The popularity ranks refer to those given by the OBB platform.

The results are more or less consistent with previous obser-
vations [80]. Although there is hardly a difference between the
median popularity ranks of the three groups, there is a small
tendency for the highly productivity hackers to disclose XSS
vulnerabilities affecting less popular domains. This observa-
tion is reinforced by the lower plot in Fig. 5, which shows that
almost all of the vulnerabilities affecting unpopular domains
without Alexa’s ranks were disclosed by the high-productivity
group. Thus, all in all, the diversity-based hypotheses do not
seem sensible for the OBB platform. The explanation may
again relate to automation. In other words, running a large-
scale XSS scanner is dependent on the empirical sampling and
seeding characteristics. If a scanner uses hyperlinks and web
crawling to find new targets, it is unlikely that the cross-site
scripting findings would be consistent with website popularity.

E. Evaluation

The evaluation of new submissions is a generic problem in
bug bounties and software bug tracking in general. The prob-
lems in triaging of vulnerability reports have also intensified in
recent years, partially owing to the popularity of bug bounties
and their monetary compensations that tend to incentivize
poorly assembled reports and even fake submissions [42, 61].
Given the fundamental nature of the problem, there is also
a long history in software engineering for automating at
least some aspects of bug triaging [72]. The volume of web
vulnerabilities disseminated through the OBB platform implies
that automation is also a necessity. Fortunately, automatic
evaluation of typical cross-site scripting vulnerabilities is easy.

The OBB platform uses a simple web form for reporting
new vulnerabilities. For XSS issues, the form contains the typ-
ical <script>alert(’XSS’)</script> -style payload
embedded to a uniform resource locator together with poten-
tially required parameters. Given the information submitted
via the form, automatic verification is easy. It should be also
possible to use polling for automatically evaluating whether
and when the issue is patched by the website affected [68].
Given this background, the results summarized in Fig. 6
are understandable and sensible. Before continuing further, it
should be remarked that about eight thousand vulnerabilities
had to be removed due to missing τa or τb used to define
TTE. Furthermore, the sketch in Fig. 2 is not entirely accurate
because some older vulnerabilities are rather accompanied
with explicit timestamps denoting the dates and times on
which the vulnerabilities were evaluated. When computing the
TTE metric, these explicit timestamps are used when available.
Furthermore, newer vulnerabilities are actually accompanied
with two notification timestamps that record the dates and
times on which custom and generic notifications were sent

to the vendors. The smaller of the these is used to define τb,
provided that an explicit evaluation timestamp is not available.
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Fig. 6. Evaluation Times

Thus, the OBB platform is good at automatic evaluation
of new submission due to the focus on XSS. However, there
is another viewpoint to the time-to-evaluate metric. As was
discussed in Subsection III-B, the timestamp τb refers to a
vulnerability notification sent to a vendor. While the evaluation
of a XSS vulnerability may be fast, establishing a contact to
the website or domain affected is an entirely different thing. In
fact, previous research indicates that many responsible vendor-
side parties are not even reachable with notifications about
web vulnerabilities [68, 74]. Analogous point can be made also
with the disclosure help offered in some bug bounties [27].
Thus, either the OBB’s orchestrators are exceptionally good at
contacting vendors or the τb event in Fig. 2 is exposed to some
validity concerns. In other words, it may well be that the XSS
vulnerabilities disclosed on the platform are verified to be real,
but the contacts made to vendors contain shortcomings. This
potential deficiency contributes directly to the times vendors
take to patch the cross-site scripting issues reported to them.

F. Patching

The time a vendor takes to patch its products is a classical
research topic in the vulnerability disclosure literature. In
addition to the noted reporting aspects, there are numerous
factors that may influence the typically lengthy time delays.
Among these are the type and severity of the vulnerabilities
disclosed, the products affected and their age, the quality of
a software source code base in general, shared code bases
and third-party libraries, company policies and governmental
regulations, the potential presence of a third-party coordinator
and grace periods, trust, communication skills and the ego of
a hacker, and numerous related factors [19, 33, 35, 37, 62, 65].
Like with bug fixing in general [16], also social media has
recently brought a new element that may affect the delays.

While most of these factors may affect the patching times
also in the bug bounty context, it seems reasonable to start
from the premise that the type and reputation of a bug bounty
platform play decisive roles. If a vendor participates in a
two-sided platform as a paying customer, the patching times
should be faster compared to one-sided and community-based
platforms. Another decisive factor would be the vulnerabilities
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disseminated through a bug bounty. Accordingly, XSS vulner-
abilities should be patched relatively fast already because it
is usually trivial to correct these in the software source code.
This hypothesis does not hold for the OBB case, however.

After again removing a little over 32 thousand vulnerabili-
ties due to missing timestamps, the time-to-patch values can be
summarized in the form of a histogram shown in Fig. 7. As can
be seen, the patching times have generally been relatively long.
The mean and median of the TTP metric both indicate that
vendors have taken over seven months to patch the reported
XSS vulnerabilities on average. While the standard deviation
is also large, the shape of the histogram does not resemble a
long-tailed probability distribution seen for the TTE metric.
About 14% of the vulnerabilities were fixed in less than three
months, but rest of the vulnerabilities scatter rather evenly up
to the maximum of a little over two years.
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Despite of the stable linear growth trend in the volume of
vulnerabilities disseminated (see Fig. 3), the patching times
have also steadily decreased after the initial launch of the
platform (see Fig. 8). A possible explanation may be simple:
OBB has become more popular and better known already
due to the volume of vulnerabilities disseminated. Another
point is that the TTP values are not bad as such. In fact,

the patching times are even surprisingly similar to those that
have been observed for bug bounties targeting conventional
software products such as web browsers [19]. Of course, this
remark should not be used to hide the fact that many of the
websites and domains affected remain vulnerable. The missing
values for the τd timestamps hint that at least 19% of the cross-
site scripting vulnerabilities are likely still exploitable today.

TABLE II
CORRELATIONS BETWEEN POPULARITY AND DELAY METRICS

Time-to-evaluate Time-to-patch

Subset n 94145 75834
Pearson r 0.002 −0.003
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Fig. 9. TTE and TTP Across Domains Affected by Multiple Vulnerabilities

High

Medium

Low

TTE (days)

0 400 800

High

Medium

Low

TTP (days)

0 400 800

Fig. 10. TTE and TTP Across Hackers’ Productivity Groups

There are a couple of additional hypotheses worth briefly
visiting. The first is that the popularity of a domain would
proxy the maintenance effort for the domain, and this effort
would correlate with the patching times. As there are multiple
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dimensions to the concept of effort in the web context [70],
an alternative speculation could be that the evaluation and
patching times would be shorter for the popular domains due
to the availability of unambiguous contact details. Regardless
of the interpretation, the numbers shown in Table II indicate
no relation between the popularity ranks and the delay metrics.

The other hypothesis relates to learning effects. The basic
theoretical rationale for such effects is simple: a hacker who
discloses thousands of vulnerabilities may become better at
communicating with vendors, while a domain affected by
multiple vulnerabilities may patch faster due to a similar
learning effect. According to Fig. 9, the medians for the
TTE and TTP do not notably differ between domains affected
by a single XSS and domains exposed to multiple cross-site
scripting bugs. Nor is there a visible learning effect in terms
of the three productivity groups for the hackers. In general,
learning from the past seems limited on the OBB platform.

IV. DISCUSSION

The results presented allow to start with an answer to
the always good question about whether things might have
changed regarding basic programming mistakes such as input
validation [67]. Alas, the answer is clearly negative. Despite
of over a decade worth of education and security awareness
campaigns, basic issues such as cross-site scripting are still
extremely common. In fact, the nearly 160 thousand web
vulnerabilities disclosed through the OBB platform between
2015 and late 2017 is about twice the whole amount currently
archived to the National Vulnerability Database, for instance.

The initial evolution of the OBB platform indicates that
there is at least a good promise for bug bounty platforms that
do not provide explicit monetary compensations. The amount
of XSS vulnerabilities disclosed through the OBB platform is
a laudable achievement from the idealistic viewpoint that the
fundamental goal would be to improve security in the world
wide web. The platform has also made its own contribution
to security awareness through the communication with web-
site maintainers and web developers, as well as through the
presence in Twitter. There are also many challenges for both
research and practice. To outline some of these challenges, the
remainder of the paper enumerates a few directions for further
research and catalogs some points that may be worthwhile to
consider by the orchestrators of current bug bounty platforms.

The presented distinction between one-sided and two-sided
bug bounty platforms offers a good way to proceed into more
theoretically motivated comparisons. Given the continuing
lack of business model research in the contexts of vulnerability
markets and security industry in general [64], the platform
(or ecosystem) literature provides also an extensive base for
reference theories, hypotheses, and practical insights. The
basic premise here is that there should be a difference between
one-sided and two-sided platforms, money and non-money
platforms, vendor-specific and community-based platforms, or
targeted and untargeted bug bounties. While the contemporary
platform economy is very much also a copycat economy,
it is still surprising that the basic premise does not clearly

manifest itself in the current bug bounties. When comparing
the results presented to existing research—and when looking
at the explicit comparisons already done in existing empirical
research [19, 79, 80], the current bug bounty platforms appear
extremely similar to each other in many respects. All typical
traits of online platforms and their communities are present.

Among these traits is the productivity gap between hackers.
A small group of people usually do most of the work on online
platforms, and a small group of hackers disclose most of the
vulnerabilities on bug bounty platforms. The commonplace
network effects pose a double challenge for one-sided plat-
forms: a platform should at the same time lure new productive
participants and ensure that the existing productive participants
continue to use the platform. While both challenges have been
implicitly addressed in the existing bug bounty research, there
is still room for further empirical inquiries also in this regard.
For instance, (1) the so-called diffusion tradition [7, 55, 63]
could be followed for examining not the volumes as such but
the acceleration, deceleration, and potential saturation aspects
related to the volumes. For both Chinese and Western bug
bounties, there may be an upper limit in the potential amount
of hackers who are able or willing to engage with bug bounties.

The productivity gap correlates with a knowledge gap.
Given that some outlying participants on the OBB platform
have disclosed tens of thousands of web vulnerabilities, it
seems that the possession and use of automated tools con-
tributes to the productivity gap significantly. By implication,
there presumably exists also a knowledge gap in terms of
the ability to engineer automated XSS scanners. Cross-site
scripting vulnerabilities remain at the bottom of the pile in
terms of prestige, but it seems that XSS alone can differentiate
a hacker demography. Narrowing the productivity gap by
narrowing the knowledge gap is an important point for bug
bounty orchestrators to consider. Knowledge sharing is at the
center of this question. But while learning from others is
often noted as important for bug bounties [60, 80], following
someone in social media hardly equates to actual learning.

Thus, (2) it may be important to encourage the sharing of
technical details and software source code for finding new web
vulnerabilities. Given the competitive aspects intentionally
promoted in current bug bounties, voluntary sharing of techni-
cal details may be difficult to achieve, however. For balancing
the competition, it might be reasonable to recommend that the
bug bounty orchestrators should themselves provide blueprints
and drafts for web vulnerability discovery à la Stack Overflow.
After all, “smashing the stack for fun and profit” was a decisive
historical learning moment for the older generation of hackers.

Now that the OBB platform has geared itself toward sub-
scriptions and multiple types of web vulnerabilities, it becomes
important for the orchestrators to consider the means by which
quality could be incentivized over quantity. Given the lack
of monetary compensations, (3) improving the gamification
techniques may provide a lever, although it remains unclear
how these techniques actually influence the intrinsic rewards.
Even when monetary compensations cannot be relied upon,
(4) the common subsidization techniques [7] may provide a
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further option. For instance, it might be possible to consider
(per hacker or per domain) varying grace periods, or to reward
those hackers who are able to successfully coordinate with
vendors. From a more contentious viewpoint, (5) even the
platform’s current strategic goals might be challenged. In
other words, perhaps it is precisely XSS and the associated
large-scale Internet scanning that sets OBB apart from the
competitors. After all, platforms such as Shodan have shown
that there is a general demand for Internet scanning services.

In terms of Internet scanning, the (open) data provided by
the OBB platform leaves also some question marks. In particu-
lar, something does not match in terms of the evaluation times
presented. While it is possible to automate the verification
of XSS bugs, it is a different thing to automate successful
notifications sent to the websites and domains affected. The
platform’s orchestrators have promoted new initiatives such as
the so-called security.txt proposal [21], but the problem
is that even the older reporting standards are frequently ignored
by vendors and websites’ owners [74]. In terms of further
research, (6) a good question would be to evaluate how well
the reporting practices perform in practice. The idea about
submitting vulnerability reports based on research results has
also been toyed in the past [68]. The XSS context would make
it relatively easy to assemble a sufficient empirical sample that
could be submitted to OBB or (and) some related bug bounty.

The empirical aspects can be approached also from a dif-
ferent angle; open data can be a success factor for bug bounty
platforms [80]. More generally, (7) there would be an excellent
opportunity particularly for one-sided community platforms
to ride on the current artificial intelligence and data mining
hype. For instance, the results presented indicate that website
popularity, the productivity gap, and the learning effects do not
affect the patching times. However, (8) the maintenance effort
of websites would be a good hypothesis to examine in further
research [70]. To avoid so-called post-hoc analysis, it would
be preferable for data mining if a platform would record basic
information about websites before and after a vulnerability is
reported or patched. In terms of the potential data to record,
a good start would be the hypertext transfer protocol headers
and the hypertext markup language of the web pages affected.

In terms of empirical academic research, it can be also noted
that the existing bug bounty research (including this paper) has
focused on different aggregated metrics such as the volumes
of vulnerabilities and hackers. However, (9) it may well be
that contextual outliers are more interesting and relevant to
examine. For instance, the character string bank appears in
464 domain names present in the sample used in this paper.
Also equifax.com and equifax.co.uk are represented.

The points mentioned can be combined with other business
considerations. The business models underneath the current
bug bounty platforms have followed closely the historical her-
itage from the older vulnerability markets. However, it seems
that some of the historical ideas and options have not yet been
tried in the bug bounty context. For instance, (10) auctions,
product bundles, and insurance contracts have been frequently
discussed in the context of vulnerability markets [6, 50, 64],

but concrete experimentation with such options seems limited
in the bug bounty context. While such options are more
relevant for the two-sided bug bounty platforms, new openings
are available also for community-based one-sided platforms.

Given the popularity of different hacking contests [52] and
security exercises [51], it might be possible to move away
from the prevalent vendor-specific paradigm by considering
the subscription concept from a different viewpoint. In terms
of the OBB platform and cross-site scripting, (11) one option
might be to offer a service for registering domain name lists to
be scanned and evaluated by the hackers participating on the
platform. Such a service would allow to also evaluate whether
a platform can actually make a difference in terms of security.

Finally, the current bug bounty ecosystem as a whole can
be viewed also as a rivalry between different platforms. The
competitive aspects offer also new business opportunities. For
instance, to maximize revenues, publicity, and user participa-
tion, (12) alliances between platforms are commonly used in
some industry sectors [7, 55]. In addition to the maximization
aspects, alliances may reduce the frequent hopping from
one bounty to another [46], which likely contributes to the
prevalence of invalid submissions, false positives, duplica-
tion of work, and related practical problems. Now that also
governmental agencies and public sector organizations have
started to participate in bug bounty platforms and implement
bug bounties of their own, it becomes important to consider
whether CERTs or related institutions should participate in the
bug bounty ecosystem. New innovations are required also for
improving the vulnerability disclosure practices and processes,
which continue to be a bottleneck also in many bug bounties.
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