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ABSTRACT
Ransomware can prevent a user from accessing a device and its
files until a ransom is paid to the attacker, most frequently in Bit-
coin. With over 500 known ransomware families, it has become
one of the dominant cybercrime threats for law enforcement, secu-
rity professionals and the public. However, a more comprehensive,
evidence-based picture on the global direct financial impact of
ransomware attacks is still missing. In this paper, we present a
data-driven method for identifying and gathering information on
Bitcoin transactions related to illicit activity based on footprints
left on the public Bitcoin blockchain. We implement this method
on-top-of the GraphSense open-source platform and apply it to
empirically analyze transactions related to 35 ransomware families.
We estimate the lower bound direct financial impact of each ran-
somware family and find that, from 2013 to mid-2017, the market
for ransomware payments has a minimum worth of USD 12,768,536
(22,967.54 BTC). We also find that the market is highly skewed with
only a few number of players responsible for the majority of the
payments. Based on these research findings, policy-makers and law
enforcement agencies can use the statistics provided to understand
the size of the illicit market and make informed decisions on how
best to address the threat.
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1 INTRODUCTION
Ransomware attacks have eclipsed most other cybercrime threats
and have become the dominant concern for law enforcement and
security professionals in many nations (cf. [8, 31, 34]). The device
of ransomware victims are infected by a class of malicious software
that, when installed on a computer, prevents a user from accessing
the device — usually through unbreakable encryption — until a
ransom is paid to the attacker. In this type of attack, cybercriminals
do not profit from the resale of stolen information on underground
markets to willing buyers, but from the value victims assign to their
locked data and their willingness to pay a nominal fee to regain
access to them. To that extent, the business model of ransomware
seems conducive to more favorable monetizing opportunities than
other forms of cybercrimes, due to its scalable potential and the
removal of intermediaries.

Prominent recent ransomware examples are Locky, SamSam, or
WannaCry, the latter infected up to 300,000 victims in 150 coun-
tries [8]. Like other ransomware, these families focus on extorting
money from victims and thus raise fear and concern among po-
tential victims who see the attack as a direct intimidation [10]. At
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the time of writing, there are 5051 known ransomware families
detected and almost all of them demand payments in Bitcoin [27],
which is the most prominent cryptocurrency.

Yet, global and reliable statistics on the impact of cybercrime
in general, and ransomware in particular, are missing, causing a
large misunderstanding regarding the severity of the threat and
the extent to which it fuels a large illicit business. Most of the
statistics available on cybercrime and ransomware are produced
by private corporations (cf. [29, 38, 39]) that do not disclose their
underlying methodologies and have incentives to over- or under-
report them since they sell cybersecurity products and services
that are supposed to protect their users against such threats [23].
Also, both cybercrime and ransomware attacks take place in many
regions of the world and reporting the prevalence of the threat on a
global level is difficult, especially when it involves a blend of fairly
sophisticated technologies that may not be familiar to a large num-
ber of law enforcement organizations [23, 37]. This is unfortunate
because the lack of reliable statistics prevents policy-makers and
practitioners from understanding the true scope of the problem,
the size of the illicit market it fuels and prevents them from being
able to make informed decisions on how best to address it, as well
as to determine what levels of resources is needed to control it.

But ransomware offers a unique opportunity to quantify at least
the direct financial impact of such threat: ransomware payments
are transferred in Bitcoin, which is a peer-to-peer cryptocurrency
with a public transaction ledger — known as blockchain — that is
shared among peers. When ransomware payments can be identi-
fied correctly, the Bitcoin blockchain provides a reliable basis on
which to assess ransomware cash flows. Furthermore, a number
of clustering heuristics (cf. [20, 22, 32]) have been proposed that
support partitioning the set of Bitcoin addresses observed in the
entire cryptocurrency ecosystem into maximal subsets, which are
likely controlled by the same real-world actor. Previous studies have
measured ransomware payments in the ecosystem, but focused on
a single ransomware family (CryptoLocker [19]), did not make use
of known clustering heuristics [17] or, at the time of this writing,
disclosed limited information on their underlying methodology [4].

In order to provide a more comprehensive picture of the global
direct financial impact of ransomware attacks, we propose a data-
driven method for identifying and gathering information on Bitcoin
transactions related to ransomware and then apply this method for
35 ransomware families. More specifically, the contributions of this
paper can be summarized as follows:

• We propose a data-driven method for identifying and gath-
ering Bitcoin transactions, related to ransomware attacks,
that goes beyond known clustering heuristics.

1https://id-ransomware.malwarehunterteam.com/
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• We implement this method on-top-of the open-source Graph-
Sense cryptocurrency analytics platform2 and make the
transaction extraction3 and analytics procedures4 openly
available.

• We apply the method on a sample of 35 different ransomware
families and find new addresses related to each ransomware
family, distinguish collectors from payment addresses and,
when possible, track where the money is cashed out.

• We quantify the lower direct financial impact of each ran-
somware family, show how ransom payments evolve over
time and find that from 2013 to mid-2017, the market for
ransomware payments for 35 families sums to a minimum
amount of USD 12,768,536 (22,967.54 BTC).

To our knowledge, this paper is the first to present a method
to assess payments of a large number of ransomware families in
Bitcoin and to provide a lower bound for their direct financial im-
pacts, while being openly available and reproducible. Our proposed
method and findings also roughly correspond with concurrent re-
search reported in Bursztein et al. [4] and Huang et al. [15].

The remainder of this paper is organized as follows: we provide
further details on ransomware and traceability of Bitcoin transac-
tions in Section 2. Our methodology for identifying and gathering
Bitcoin transactions is described in Section 3 and the results of our
study is presented in Section 4. The discussion follows in Section 5
along with the conclusion in Section 6.

2 STATE OF THE ART
2.1 Ransomware
The concept of extorting money from user devices through mali-
cious means has had a long existence, such as fake anti-virus that
forced users to buy a software to erase an inexistent malware from
their devices [11, 31, 35]. Still, ransomware is a criminal innovation
that seeks to monetize illegally accessed information by charging
its rightful owner a ransom — usually a few hundred dollars —
to recover the personal files that have a unique sentimental or
administrative value.

Nowadays, two modes of attacks have been used by ransomware
authors to prevent file access on a device. The first mode of attack
aims at locking out a user from a device by disabling the operat-
ing system (OS). When the user starts the device, a ransom note
appears requesting money to be transferred for the device to start
as usual [11, 35]. The second mode of attack is more sophisticated
and uses cryptography. The technique is to encrypt a user’s files on
a device before requesting a ransom in exchange for the key that
will decrypt them [35].

Since the first implementation of encryption as an attack tech-
nique, other technologies have been leveraged to increase the effi-
ciency of new variants of ransomware. The Onion Routing (Tor)
Protocol has allowed ransomware attackers to use an anonymous
and direct communication channel with their victims. The use
of cryptocurrencies for ransom payments has enabled relatively
anonymous money exchanges, while evading the control of estab-
lished financial institutions and their law enforcement partners.

2http://graphsense.info/
3https://github.com/behas/ransomware-dataset
4https://github.com/behas/ransomware-analytics

The combination of strong and well-implemented cryptographic
techniques to take files hostage, the Tor protocol to communicate
anonymously, and the use of a cryptocurrency to receive unmedi-
ated payments provide altogether a high level of impunity for ran-
somware attackers [30].

Many argue that ransomware authors have proved to be highly
innovative in the past years. Since 2013 and the first introduction
of the Cryptolocker ransomware, new variants have been designed
and distributed by ambitious cybercriminals, building on the suc-
cess of previous versions or fixing previous errors [11, 17, 31]. Yet,
focusing on the speed at which ransomware authors modify their
malware and the technologies used may lead to overestimate the
severity of the threat.

As the current hype would have it, ransomware authors would
make large amounts of money — up to millions of dollars — with
this successful online black mailing activity [2, 14, 29]. As it is
often the case, the reality is not that simple. In 2015, Kharraz et
al. [17] published a long-term study on ransomware attacks in
which they analyzed 1,359 samples from 15 ransomware families.
Even though ransomware has evolved, these authors found that
the number of families with sophisticated destructive capabilities
remains quite small. They also found that malware authors mostly
used superficial techniques to encrypt or delete a victim’s files.
Flaws were, moreover, found in the code, making the attack easily
defeated. Similarly, Gazet [10] conducted a comparative analysis
of 15 ransomware and discovered that the code used was often
basic and built on high-level languages. Looking at the victims
and the ransoms asked, the author concluded that ransomware
attackers followed a low-cost/low-risk business model: they did not
aim at mass extortion, but relied instead on small attacks for small
ransoms, which could be compensated by mass propagation.

Moreover, although ransomware was perceived, at first, as a
destructive form of attack almost impossible to prevent and detect,
many initiatives led by the security community have tempered this
initial assessment [17]. For example, Kharraz et al. [16], Scaife et
al. [33], Song et al. [35], Continella et al. [5] and Kolodenker et
al. [18] all developed tools to detect ransomware-like behaviors and
prevent them from successfully encrypting a device. These tools
help mitigate ransomware attacks, minimizing the potential dam-
ages caused by this threat. The ransomware threat is thus certainly
evolving and growing, but is not out of control. The community
keeps finding ways to detect and block it preemptively. Moreover,
when a user is infected, an international initiative called "No More
Ransom!"5 provides decryption tools for victims of ransomware.
These tools were developed by exploiting technical flaws in mal-
ware implementations and, at the moment, more than 40 of them
are available on the website for different ransomware strains.

2.2 Bitcoin Traceability Research
Bitcoin is a peer-to-peer cryptocurrency initially introduced by
Satoshi Nakamoto (a pseudonym) in 2008 [27]. It can be used to
execute pseudo-anonymous payments globally within a short pe-
riod of time and — at least before the enormous rise in popularity
at the end of 2017 — with comparably low transaction costs. All ex-
ecuted and confirmed financial transactions are stored in a shared

5https://www.nomoreransom.org/
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and transparent ledger, known as the blockchain, which is pub-
licly accessible. Each transaction is represented by a list of inputs
pointing back to outputs and a list of outputs, each reflecting an
amount of Bitcoins transferred to a specific recipient’s address. A
Bitcoin address is an alphanumeric string derived from the public
key of an asymmetric key pair generated by a Bitcoin user. Every
user can hold multiple key pairs (and addresses) in a wallet, and is
encouraged to use a new address for each transaction to increase
the level of anonymity.

A number of heuristics have been developed to analyze transac-
tions and group all addresses in the Bitcoin blockchain into maximal
subsets (clusters) that can be associated with some real-world actors.
The multiple-input heuristics [27, 32] takes into account that two
addresses used as inputs in the same transaction must be controlled
by the same real-world actor. If one input address is used in another
transaction along with other input addresses, they can all be linked
to the same real-world actor. Cluster identification can further be
refined by applying change heuristics [3, 20, 36], which exploit the
concept of "change addresses" in Bitcoin. If one pays 1.5 BTC for a
service, but has an address with 2 BTC, the remaining 0.5 BTC will
be sent back to the user using what is defined as a "change address".

When clusters are correlated with attribution data (tags) from
external sources, such as publicly available information in forums
(cf. [9]) or specific sites (e.g., blockchain.info, walletexplorer.org),
it is possible to deanonymize large fractions of the entire Bitcoin
transaction network. Clustering of Bitcoin addresses and tagging
addresses with attribution data are two central features that are
nowadays supported by modern cryptocurrency analytics tools
(e.g., Chainalysis, Elliptic, GraphSense).

Applying these strategies on public transactions turns Bitcoin
into — at most — a pseudo-anonymous currency, in which mone-
tary flows can be traced from one known or unknown address to
another. These strategies can identify Bitcoin addresses and clus-
ters related to illicit activities, unless one makes use of mixing or
CoinJoin services. Mixing Services — also known as tumblers —
are specialized intermediaries that break the link between senders
and receivers by mixing coins and transactions with those of other
users (c.f. [26]). A CoinJoin transaction, on the other hand, is a spe-
cial transaction in which multiple senders and recipients of funds
combine their payments in a single aggregated transaction. This
requires a dedicated service (e.g., JoinMarket) that matches inter-
ested users and supports them in creating the transaction [25]. Both
types of services facilitate the amalgamation of coins belonging to
multiple individuals in a single transaction, making the tracing of
illicit activity more difficult.

The effectiveness of clustering heuristics has been investigated
by Nick [28], who assessed the well-known multiple-input clus-
tering heuristics on a ground-truth dataset of approximately 37K
wallets and found that such a clustering algorithm can guess, on
average, 68.59% of all addresses belonging to a wallet. Building on
that, Harrigan and Fretter [12] concluded that address clustering
in the Bitcoin network was effective due to identified address reuse
and the existence of superclusters with incremental growth (e.g.,
exchanges, gambling sites, darknet marketplaces).

2.3 Tracing Bitcoin Transactions related to
Ransomware

A ransomware attacker who requests payments in Bitcoin will
broadcast a Bitcoin address to which the victim needs to send
money to. This address is a ransom payment address from which
clustering heuristics in the Bitcoin network can be computed. Three
previous studies have investigated ransomware activity in the Bit-
coin network. Kharraz et al. [17] analyzed 1,872 Bitcoin addresses
related to the CryptoLocker ransomware. They concluded that
Bitcoin addresses related to Cryptolocker had similar transaction
records, such as a short activity period and a few numbers of small
transactions. In total, 84% of the addresses analyzed had no more
than six transactions and 69% were active for less than 10 days.
Liao et al. [19] also performed a measurement analysis of the Cryp-
tolocker ransomware. They started their investigation with two
Bitcoin addresses and generated a cluster of 968 addresses. They fil-
tered transactions based on ransom amounts and time and provided
a lower and upper bound for Cryptolocker’s economy. They men-
tioned that possible connections exist between this ransomware
and Bitcoin services, such as Bitcoin Fog and BTC-e, and other
cybercrime activities, like darknet markets. Finally, a concurrent
research reported in Bursztein et al. [4] and Huang et al. [15] traced
Bitcoin transactions of several ransomware families. The research
estimated that about USD 16 million ransomware payments were
made with Bitcoins over a two-year period.

This study goes beyond the state of the art on ransomware and
Bitcoin traceability research by presenting a simple automated
method, built on known clustering heuristics, to systematically
trace monetary flows. It applies the method on Bitcoin transactions
related to 35 ransomware families to identify, quantify and compare
their financial activity in the Bitcoin network.

3 METHODOLOGY
In the following section, we describe how we identify, collect, and
filter payments related to ransomware attacks by analyzing the
Bitcoin blockchain.

3.1 Seed Dataset Collection
To begin, Bitcoin addresses related to ransomware attacks were
collected from various sources. A total of 7,037 addresses related to
the Locky ransomware were provided to us by the Anti-Phishing
Working Group (APWG)6. An additional 139 Bitcoin addresses were
found in a thread maintained by Michael Gillepsi7. Through addi-
tional online searches, 46 Bitcoin addresses were found in various
sources, such as security researchers’ blogs or websites of organi-
zations analyzing ransomware activity. In total, we extracted 7,222
Bitcoin addresses related to 67 ransomware families. Throughout
the whole study, we refer to them as seed addresses because they
are the ones used to generate the larger dataset.

3.2 Bitcoin Network Construction
We extracted transaction data from the Bitcoin blockchain using the
GraphSense open-source platform. Our most recent expansion ran
6https://www.antiphishing.org/
7Michael Gillepsi is the creator of the initiative : https://id-ransomware.
malwarehunterteam.com/
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on October 28th, 2017 with 489,181 blocks, 260,167,622 transactions
and 312,506,384 addresses.

In order to trace monetary flows, we computed two types of
network representations over the entire blockchain: the address
graph, in which each vertex represents a Bitcoin address and each
directed edge represents the aggregated set of transactions transfer-
ring value from one address to another. For each directed edge we
computed summary statistics, such as the number of transactions
and the estimated value flow between two addresses, considering
the daily Bitcoin/USD closing price as conversion rates. The tech-
nical details of these computations are described in more details
in an earlier paper [13]. Moreover, transaction outputs containing
explicit change addresses (i.e., addresses that were also referenced
by one of the inputs within the same transaction), were removed to
eliminate monetary flows having the same address as source and
destination.

The second type of network representation is the cluster graph.
To compute this graph, we partitioned the set of addresses observed
in the entire blockchain into maximal subsets (clusters) that are
likely to be controlled by the same real-world actor using the well-
known [32] and efficient [12] multiple-input clustering heuristics.
The underlying intuition is that if two addresses (i.e.: A and B) are
used as inputs in the same transaction while one of these addresses
along with another address (i.e: B and C) are used as inputs in
another transaction, then the three addresses (A, B and C) must
somehow be controlled by the same real-world actor [20], who
conducted both transactions and therefore possesses the private
keys corresponding to all three addresses. In the cluster graph, the
nodes represent address clusters and the directed edges represent
transactions between clusters. Since each cluster represents an
aggregation of addresses, the edges between clusters can be seen as
an aggregation of each transaction value taking into account USD
conversion rates.

In order to associate real-world actors, such as Bitcoin exchanges
or gambling sites, with addresses and clusters, we gather pub-
licly available information, so-called tags, from two main external
sources: walletexplorer.com and blockchain.info. Each tag asso-
ciates a specific Bitcoin address with some contextually relevant
information (e.g., BTC-e.com) about real-world actors and facilitates
the interpretation of monetary flows. The great power of Bitcoin
address attribution lies in its combination with clustering heuristics:
if one can attribute a single address within a cluster containing
hundred of thousands of addresses, one can attribute the entire
cluster. When investigating monetary flows, Bitcoin exchanges are
of great interest because they are the entry and exit points of the
cryptocurrency ecosystem where fiat currencies (e.g., USD, EUR)
are converted into cryptocurrencies and vice versa.

3.3 Dataset Expansion Procedure
To expand the seed address dataset, whichwas obtained as described
in Section 3.1, wematched the set of seed addresseswith the set of all
addresses extracted from the blockchain. This eliminated 100 seed
addresses not appearing in the blockchain because they have not
(yet) received ransom payments from victims and have therefore
not been used in a Bitcoin transaction, reducing our dataset to
7,122 addresses from 38 families. We then expanded the dataset by

Family Ransomware Start Date Investigation Method
1 Locky 2016-02 Google Trends
2 CryptXXX 2016-04 Google Trends
3 CryptoLocker 2013-09 Google Trends
4 DMALockerv3 2016-01 Google Trends
5 CryptoTorLocker2015 2015-02 Google Trends
6 Globe 2013-04 Google Trends
7 SamSam 2016-01 Google Trends
8 NoobCrypt 2015-12 Manual search
9 EDA2 2015-09 Manual search
10 Flyper 2016-09 Manual search
11 Globev3 2017-01 Manual search
12 JigSaw 2016-04 Google Trends
13 Cryptohitman 2016-05 Google Trends
14 TowerWeb 2016-06 Manual search
15 WannaCry 2017-05 Google Trends
Table 1: Time filters applied for top 15 ransomware families.

linking these seed addresses to their corresponding clusters in the
cluster graph, which was pre-computed through the multiple-input
heuristics. We refer to these addresses as expanded addresses.

However, if a ransomware author was involved in other activities
that implied Bitcoin transactions before the ransomware campaign,
the multiple-input heuristic could result in false positives. Thus,
to ensure that the addresses in the expanded dataset were related
to ransomware activity, we applied a time filter on the expanded
dataset by determining a start date of ransomware campaigns. For
25 families, we used the Google trend searches and extracted the
first month in which online searches about the ransomware fam-
ily took place. Google trend searches can be a good indicator of
the beginning of a ransomware campaign because individuals or
organizations hit by a ransomware campaign are likely to search on-
line to learn more about the threat before they decide on a course
of action. This method was, however, not successful for 13 ran-
somware families from which Google trend search did not have
any data. For those cases, we looked for online articles or blogs on
the ransomware family and took the earliest article published on
the subject, no matter in which language it was written. Out of the
13 families, we did not find any information on the start date of
three of them because no articles or blogs were published related to
them; they were sometimes only listed as a potential threat among
other ransomware families.

Our final sample contains 7,118 addresses related to 35 ran-
somware families and corresponding time filters (see Table 1). In
the remainder of this paper, due to limited space, the subsequent
tables will display the Top 15 ransomware families8. Table 2 sum-
marizes the top 15 ransomware families ordered by the number of
addresses in our expanded dataset after application of time filters
(Exp. Addr. (TF)). It also lists the number of collected seed addresses
(Seed Addr.), the number of expanded addresses before time filter-
ing (Exp. Addr.), and the number of clusters (Clusters) that can be
assigned to each ransomware family. The numbers in Table 2 show
that the multiple-input heuristics can identify a large number of
Bitcoin addresses related to ransomware attacks. Table 2 also shows
that the seed address distribution is highly skewed.

8The results for the 35 families can be reproduced with the scripts and the datasets
provided in the Github repositories
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Family Seed Addr. Clusters Exp. Addr. Exp. Addr. (TF)

1 Locky 7,038 1 7,094 7,093
2 CryptXXX 1 1 1,742 1,742
3 CryptoLocker 2 1 968 968
4 DMALockerv3 9 3 165 165
5 CryptoTorLocker2015 1 1 159 121
6 Globe 8 2 87 87
7 SamSam 44 11 47 47
8 NoobCrypt 2 1 28 28
9 EDA2 2 2 33 26
10 Flyper 2 1 26 26
11 Globev3 9 3 19 18
12 JigSaw 12 4 17 17
13 Cryptohitman 1 1 14 13
14 TowerWeb 1 1 14 8
15 WannaCry 5 1 6 6

Table 2: Dataset statistics for top 15 ransomware families.

In the case of Locky, we found that the number of seed addresses
is almost equal to the number of expanded addresses because the
multiple-input heuristic was already computed on the seed ad-
dresses provided by the APWG. Also, the number of CryptoLocker
addresses corresponds exactly to the number of addresses (968)
reported by Liao et al. [19] in an earlier study. We take these obser-
vations as a validation of our expansion method and its implemen-
tation. When looking at Table 2, one can observe that time filtering
does not eliminate many addresses in the expanded dataset. This in-
dicates that the multiple-input clustering already delivers addresses
within the expected time frame of each ransomware campaign.

3.4 Beyond the Clustering Process: Tracing
Outgoing Relationships

The dataset expansion using the multiple-input heuristic points to
new addresses related to ransomware attacks. While investigating
the expanded dataset, we developed a simple method to go beyond
the clustering process and tracemonetary flows. Indeed, by focusing
on outgoing transactions for one ransomware family, one can find
common addresses receiving money from the expanded addresses
related to that ransomware family.

The method consists of taking into account, for each expanded
address, all the outgoing transactions and their respective outputs.
With this, an outgoing-relationships graph can be built for each
ransomware family. The nodes in the graph are either the expanded
addresses or the addresses receiving money from the expanded ad-
dresses. The edges in the graph illustrate the direction of the mone-
tary flow. For example, Figure 1 illustrates the outgoing-relationship
graph for the CryptoHitman ransomware family. The red nodes rep-
resent addresses from our expanded address dataset which belong
to the CryptoHitman family and the gray nodes represent output
addresses not in the dataset. The graph shows that some addresses
are key since they receive, more than once, money from known
CryptoHitman addresses. Other gray addresses in the graph only
receive one incoming transaction. They could possibly be related
to the CryptoHitman ransomware, but the information in the graph
is insufficient to allow such conclusion. While the CryptoHitman
graph is small enough for visual inspections, other ransomware
families have large graphs and require automated mechanisms to
distinguish key addresses. Thus, to automatically distinguish key

Figure 1: CryptoHitman Outgoing-Relationships Graph

Family New Key Addr. Key Expanded Addr.

1 CryptXXX 488 438
2 Locky 305 266
3 CryptoTorLocker2015 160 37
4 DMALockerv3 53 18
5 Globe 47 38
6 NoobCrypt 43 11
7 SamSam 31 6
8 CryptoLocker 26 24
9 EDA2 16 3
10 JigSaw 16 1
11 Cryptohitman 9 1
12 TowerWeb 9 1
13 Globev3 6 0
14 Flyper 5 3
15 VenusLocker 5 1

Table 3: Key Addresses identified for each family.

addresses in an outgoing-relationships graph, we develop a sim-
ple method. For each node, we calculate the number of incoming
relationships in the graph, as expressed in Definition 3.1:

Definition 3.1. The in-degree deд− of a Bitcoin address a is the
sum of all unique incoming relationships of a within the scope of a
family-specific outgoing-relationships graph.

We consider that each node that has deд(a)− ≥ 2, in a family-
specific outgoing-relationships graph, is a key address for this ran-
somware family. Even though some addresses are already in the
dataset while others are not, they are all identified as key addresses
related to the ransomware family.

We computed an outgoing-relationships graph for each family
in the dataset and calculated the metric by applying the above
definition. We found, in total, 2,077 key addresses from the 35
families studied. Table 3 presents the number of key addresses
found with the outgoing-relationships graph for each family, and
shows how many were already part of our expanded dataset (Key
Expanded Addr.) and how many were added by this method (New
Key Addr.).
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3.5 Estimating the Lower Bound Financial
Impact of Each Ransomware Family

With the dataset generated through the different steps mentioned
above, an assessment of the minimum direct financial impact of
each ransomware family is possible. The multiple-input clustering
heuristic allowed an expansion of the dataset and the time filtering
ensured that the expanded addresses were within the time frame
of each ransomware campaign. Also, the method of tracing outgo-
ing relationships found key addresses that received money from
the expanded addresses related to a ransomware family. The key
addresses already in the expanded dataset (red nodes) are filtered
out of the expanded dataset for the financial assessment, in order
to avoid double-counting ransom payments.

4 THE IMPACT OF RANSOMWARE
Building on the methodology presented in the previous section
and the resulting dataset, we can now analyze Bitcoin transactions
related to ransomware. In the following section, we report our
findings on tracing ransomware monetary flows. Then, we provide
a lower bound estimation for the direct financial impact of the
Top 15 families in our dataset and give insight into the value and
longitudinal development of ransomware payments. Lastly, we
present an estimation of the minimum worth of the market for
ransomware payments.

4.1 Following the Money Trace
By computing the outgoing-relationships graph for each ran-
somware family and applying the condition mentioned above, key
addresses for each ransomware family were found. Although the
minimum for an address to be determined as key was to score
deд(a)− ≥ 2, many key addresses had a much higher score. Within
the sample of 2,077 key addresses, the average deд(a)− was 12
(std=27.66) incoming relationships and the median was 6. The max-
imum deд(a)− in the sample went up to 742 incoming relationships.
This indicates that ransomware authors do tend to consolidate their
money into one or several key addresses.

Intuitively, these key addresses can be considered collectors of
a ransomware family. We define a collector as an address used to
collect or aggregate payments from several payment addresses. To
picture the role of a collector, Figure 2 shows the relationships
of a subset of Locky addresses. It illustrates that an address that
was already in the expanded dataset (red node) has a high degree
centrality and receives 32 payments of less or equal to 10 BTC. Con-
sidering the high degree centrality, this address can be considered
a collector of the Locky ransomware family. That figure also shows
that the high-degree centrality address sends 67 Bitcoins to a gray
address, which is an address not in the expanded dataset. Similarly,
two other addresses, from the expanded dataset, send 50 Bitcoins
to that gray address. At a higher level, this gray address can also
be considered a collector of the Locky ransomware family.

However, it must be noted that a collector address does not nec-
essarily belong to the same cluster of a family’s seed and expanded
addresses (such as the gray node in Figure 2). This is because de-
ciding whether an address is a collector or not depends on the
monetary flow in an outgoing-relationships graph related to a ran-
somware family and has nothing to do with the multiple-input

Figure 2: Locky collector address example.

heuristic results, which is based on the author having the private
keys of all addresses in the cluster. Indeed, some collector addresses
can rather be part of a larger cluster representing Bitcoin exchange
services or gambling sites, which can be used by attackers to con-
vert ransom payments to fiat currencies or to camouflage monetary
flows.

If a key address belongs to a large known cluster, it could then be
considered the end route of tracing ransomware payments. As ex-
plained before in themethodology, such assessment is possible by in-
vestigating tags associated with addresses and address clusters. We
investigated the tags associated to the 2,077 key addresses and their
corresponding clusters in more detail and found 163 key addresses
related to 28 tagged clusters with additional contextual informa-
tion. Of these 163 collectors, 86 were related to known exchanges
organizations, such as BTC-e.com, LocalBitcoin.com, Kraken.com
and Xapo.com. Another 47 were related to gambling sites like
SatoshiDice.com, Bitzillions.com, SatoshiMines.com, BetCoin Dice and
FortuneJack.com. A total of 12 addresses were linked to mixing ser-
vices, such as BitcoinFog.info and Helix Mixer. These services are
specialized intermediaries which mix coins and transactions of dif-
ferent actors and thereby camouflage the digital trace of cryptocur-
rency transactions. They play a central role in money laundering
and cybercrime-related activities that rely on cryptocurrencies as a
payment method.

Although our information on real-world actors behind addresses
and clusters was limited to the tags we retrieved from external
sources and therefore incomplete, we found that some ransomware
attackers directly sent the ransom payments to known actors,
mostly gambling and exchange services. We also found that some
ransomware families specifically transacted multiple times with
the same actor. For example, 20 CryptoTorLocker2015 key addresses
were related to the SatoshiDice organization and 25 Locky key ad-
dresses were linked to the BTC-e exchange. Also, about 27 key
addresses from five ransomware families belonged to the Localbit-
coin.com9 cluster, which is an exchange that allows individuals to
buy and sell Bitcoins to people who are geographically close.

As extra information, the outgoing-relationships analysis also
linked some families together. It illustrated that the Globe and
Globev3 families sent money to the same untagged collector ad-
dress, which was to be expected based on their shared naming
features, but was confirmed through our methodology. Similarly,
9https://localbitcoins.com/about
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Family Addresses BTC USD
1 Locky 6,827 15,399.01 7,834,737
2 CryptXXX 1,304 3,339.68 1,878,696
3 DMALockerv3 147 1,505.78 1,500,630
4 SamSam 41 632.01 599,687
5 CryptoLocker 944 1,511.71 519,991
6 GlobeImposter 1 96.94 116,014
7 WannaCry 6 55.34 102,703
8 CryptoTorLocker2015 94 246.32 67,221
9 APT 2 36.07 31,971
10 NoobCrypt 17 54.34 25,080
11 Globe 49 33.03 24,319
12 Globev3 18 14.34 16,008
13 EDA2 23 7.1 15,111
14 NotPetya 1 4.39 11,458
15 Razy 1 10.75 8,073
Table 4: Received payments per ransom family (Top 15).

10 key addresses, with a few number of transactions and no tags,
received money from both the TowerWeb and Cryptohitman ad-
dresses. Intuitively, we can assume that these two families might
be related to the same real-world actors who may run two families
of ransomware simultaneously or may launder money on behalf of
the two different groups.

4.2 Lower Bound Direct Financial Impacts
Besides tracing ransomware monetary flows, we assessed the lower
bound financial impact of each ransomware family. The basis for
our estimation was the time-filtered expanded ransomware dataset
described in Section 3.3. In order to avoid double-counting of ran-
somware payments, we removed known collector addresses from
the dataset. Table 4 presents the total amount of received payments
for the Top 15 ransomware families in the dataset. It shows received
payments in Bitcoin (BTC), rounded to two decimal places, and in
U.S dollars (USD). We find that the ransomware family that gen-
erated the largest direct financial impact in our dataset is Locky,
which received payments totalizing USD 7,834,737. The second
ransomware family is CryptXXX with a lower bound direct finan-
cial impact of USD 1,878,696, followed by the DMALockerv3 ran-
somware family with USD 1,500,630. Based on our dataset, these
are the three families that created a lower bound direct financial
impact of more than one million. Then, SamSam, Cryptolocker and
GlobeImposter generated lower bound direct financial impacts of
hundreds of thousands of dollars each. As we go down the ranking,
a rapid decline is observed: the ransomware occupying the 15th
position, Razy, barely gathered a lower bound of USD 8,073.

Due to the worth of the Bitcoin being highly volatile, we do
not consider these amounts as representing ransomware revenue.
Indeed, such assumption would assume that ransomware authors
cashed out immediately after receiving victims’ payments, which
may not be the case.

Also, when comparing the amounts above with findings reported
in other studies, we observe similarities and discrepancies. The re-
sults for Locky and CryptXXX are consistent with the concurrent
research reported in Huang et al. [15] and Bursztein et al. [4]. These
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Figure 3: Mean payment per family with standard mean er-
rors.

authors found that the Locky ransomware generated a direct finan-
cial impact of approximately USD 7,8 million and the CryptXXX
ransomware approximately USD 1.9 million. However, there is a
discrepancy in the results for CryptoLocker: they estimated that
Cryptolocker created roughly USD 2 million in direct financial im-
pact versus USD 519,991 in our study. Liao et al. [19] measured
CryptoLocker payments from September 2013 until January 2014
and reported a lower bound direct financial impact of USD 310,472
and an upper bound of USD 539,080, which is much closer to our
result. Yet, the discrepancy seems to come from the addition of a
single additional seed address — disclosed in the Huang et al. [15]
study — that led to an expanded cluster of 3,489 addresses. This
cluster neither appears in our research nor in Liao et al.’s.

Another discrepancy lies in the result, displayed in Bursztein et
al. [4], about the SamSam ransomware: USD 1.9 million for this re-
search against USD 583,498 in this study. The differences may arise
from the different number of seed addresses used in the Bursztein
et al. research. Finally, we identify high or moderate performing
ransomware families, such as DMALockerv3 and NoobCrypt, that
did not register in the concurrent research.

4.3 Inspecting Payments
Figure 3 presents the mean payment per family (and the standard
mean errors) of the Top 15 families. It shows that the incoming
transactions of 12 ransomware families range from very low pay-
ments up to USD 2,000. Three ransomware families have higher
payments on average: DMALockerv3, GlobeImposter and SamSam.
In January 2016, DMALockerv3 was known to ask for ransom pay-
ments of 15 BTC (which was equivalent to $6491.25) [21, 29]. The
SamSam ransomware was also known to ask ransoms based on the
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Figure 4: Longitudinal payment trend per family.

number of machines infected and the ransom could go from 1.7
BTC ($4,600) to decrypt a given machine up to 12 BTC ($32,800)
to decrypt all machines infected [6]. For the GlobeImposter ran-
somware, however, we could not find a justification for the relative
high mean payment value and mean error rate. We only identified
a single address for that ransomware family in our dataset and,
therefore, could not compute means across addresses belonging to
that family.

Figure 4 shows cumulative (red line) and non-cumulative ransom
payments (blue dots) over time for a selection of four ransomware
families: Cryptolocker, Locky, SamSam and Wannacry. For three
famous families, CryptoLocker, Locky andWannacry, it shows the
viral effect of ransomware attacks and ransom payments. It also
illustrates that famous ransomware campaigns are likely to be a
short-term, one-time deal, in which a ransomware author makes

money quickly and then stops, possibly due to various forms of
security interventions. However, the SamSam ransomware seems
to behave differently since the cumulative payment curve shows a
somewhat linear trend over awhole year, from July 2016 to July 2017.
The difference in this campaign could be related to the different
approach used by the ransomware authors, which is known to be
more targeted [6].

4.4 Market for Ransomware Payments
When summing the lower bound direct financial impacts of all
35 families analyzed in our study, we find that, from 2013 to mid-
2017, the minimum worth of the market for ransom payments
represents USD 12,768,536 (22,967.54 BTC). This means that the
Locky ransomware accounts for more than 50% of the ransomware
payments and the first three families account for 86% of the market
while the other 32 families share the remaining 12%. These results
are similar to the concurrent research reported in Bursztein et al. [4]
and Huang et al. [15], which also conclude that the ransomware
market is dominated by a few kingpins.

5 DISCUSSION
Overall, we believe that the method presented in this paper led
to novel insights for each ransomware family. Ransom payment
addresses and collectors were differentiated in the dataset, allowing
one to assess ransomware lower bound direct financial impacts
without double-counting. Plus, we were able to trace monetary
flows of ransomware payments and identify destinations, such as
Bitcoin exchanges or gambling services, when contextually related
information (tags) was available. Our method is reproducible and
could be repeated for additional families with an updated seed
dataset. Plus, computation of address clusters over the most recent
state of the Bitcoin blockchain, along with more identification of
clusters belonging to specific groups, could greatly increase the
knowledge on exit points of ransomware monetary flows.

We are well aware that our approach has a number of limitations.
First, our methodology relies on a set of seed addresses manually
collected and the effectiveness of the multiple-input heuristics for
uncovering previously unknown addresses linked to this family.
Thus, it misses other ransomware families as well as other addresses
that might belong to the same family, but cannot be linked to the
same cluster. Still, the more addresses from various families become
available, the more accurate the picture of the overall market for
ransom payments will become. We address this limitation by con-
straining our analysis to “lower bound” direct financial impacts,
to ensure we are not claiming to assess the total impacts of a ran-
somware family or of the entire market for ransom payments.

Second, our approach is limited by the extent and quality of the
attribution data (tags) available. Without this information, clusters
remain anonymous and inferences about their real-world nature are
impossible. Nevertheless, we believe that such data will increasingly
become available in the near future with the growing popularity of
cryptocurrencies and analytics tools.

Third, tumblers or mixing services, which facilitate the amal-
gamation of coins belonging to multiple individuals in a single
transaction, increase the difficulty of tracing monetary flows in
the Bitcoin network (cf., [24]). We believe that our methodology
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is robust to such services because it only considers payments to
addresses derived from a manually collected set of ransomware
payment addresses and their direct outgoing neighbors in the ad-
dress graph. Thus, in the worst case, a key address would represent
the entry point of a mixing service.

We also note that the transactions we attribute to ransomware
families could be part of CoinJoin transactions . However, we argue
that matching transactions with those of other users when collect-
ing ransom payments would add an undesirable third party (the
CoinJoin service) dependency in the process. This should hardly
be implemented in practice as using CoinJoin services to collect
ransoms would also create delays in payments and certainly cause
considerable technical efforts for ransomware attackers. This as-
sumption is somehow confirmed by Huang et al. [15], who applied
known CoinJoin detection heuristics on their dataset and did not
find such transactions.

Despite these limitations, we have shown that one can uncover
valuable insights into ransomware payments and the market values
of these attacks. Through the analysis of 35 ransomware families in
the Bitcoin network, we find that there are some clear inequalities
in the market, which could be considered as a top-heavy market
in which only a few players are responsible for most of the ran-
som payments. This is also in line with the concurrent research
reported in Huang et al. [15] and Burzstein et al. [4]. Such finding
has implications for law enforcement agencies seeking to disrupt
this market: mobilizing their limited resources on a small number
of highly capable players could lead to takedowns and have a major
(negative) impact on the ransomware economy.

Moreover, when masking major ransomware families, such as
Locky, CryptXXX and DMALockerv3, the drop in ransom amounts
is substantial and we find that more than half of the ransomware
family in the sample is responsible for less than USD 8,000 of direct
financial impacts. Kharraz et al. [17] who studied 1,359 samples from
15 ransomware families and Gazet [10], who reversed-engineered
15 ransomware samples, both found that most ransomware families
used superficial and flawed techniques to encrypt files. Few of them
had actual destructive capabilities and most of them could be easily
defeated. This could explain why only few ransomware families
succeed at generating ransom payments worth millions.

Such observations do not mean that the ransomware threat
should be underestimated. Although the minimum worth of the
market for ransom payments, taking into account 35 families, is
a relatively modest amount (about USD 12 million) compared to
the hype surrounding the issue, the overall direct and indirect dam-
ages they caused to individual and organizational victims are much
higher [2]. Yet, there is not doubt that initiatives developed by the
community to prevent ransomware attacks [16, 33, 35], as well
as the initiative "No More Ransom!"10, that make ransomware de-
cryption tools available to victims, can have a positive impact on
limiting ransom payments. Some of the ransomware families in
our datasets have decryption tools available on this community
website. Although this could explain why some families do not have
a large direct financial impact, further analysis should look into the
performance changes of a ransomware family once a decryption
tool is made available.

10https://www.nomoreransom.org/

6 CONCLUSIONS
We present a novel method for identifying and gathering informa-
tion on Bitcoin transactions related to illicit activity. We implement
this method on-top-of the GraphSense open-source platform and ap-
ply it to empirically analyze transactions related to 35 ransomware
families. We estimate the lower bound direct financial impact of
each ransomware family and find that, from 2013 to mid-2017, the
market for ransomware payments has a minimum worth of USD
12,768,536 (22,967.54 BTC). We also find that the market is highly
skewed, dominated by a few number of players. From these find-
ings, we conclude that the total ransom amounts gathered through
ransomware attacks are relatively low compared to the hype sur-
rounding this issue.

We believe that our simple data-driven methodology and find-
ings provide valuable insights and carry implications for security
companies, government agencies and the public in general. It could,
for instance, be adopted in threat intelligence systems for follow-
ing ransomware payments associated with new campaigns in real
time, and for identifying inflection points such as explosive growth
phases and slowdown periods, when the plateau of ransom pay-
ments is reached.

An evidence-based and more granular longitudinal tracking of
the entire ransomware economy would allow government agencies
and security companies to fine-tune their intervention efforts and
awareness campaigns to focus on the two or three most active
and dynamic threats. In other words, by making more reliable,
comprehensive, and timely information available on the nature
and scope of the ransomware problem, our methodology can help
lead the discussion on how best to address the threat at scale and
support subsequent decision-making.

One straightforward future work would be to extend our analysis
to additional ransomware families. Work in that direction should
also take into account the emergence of post-Bitcoin cryptocur-
rencies, such as Monero, Ethereum or Zcash, that have advanced
privacy features and are gaining popularity in the digital under-
ground [8]. Kirk is the first ransomware family that has been re-
ported to use Monero for ransom payments [1].

Another possible area of future work lies in the application of this
methodology on other illicit activities that channel their financial
transactions through the Bitcoin network, such as other extortion
cases, trafficking of illicit goods or money laundering. Since Bitcoin
is nowadays "accounting for over 40% of all identified criminal-to-
criminal payments" and cryptocurrencies seem to "[...] establish
themselves as single common currency for cybercriminals[...]" [7],
there are plenty of application areas for such a method.
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