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Abstract

There is evidence that the availability of cyber insurance is contingent on an applicant’s security
posture and that premium discounts may apply if the applicant adopts security controls dictated
by the insurer. As the cyber insurance market grows in size, questions arise regarding how this
situation will affect investment in information security. We investigate how aggregated claims
data impacts investments in information security. Monte Carlo methods are used to explore
three possible insurer strategies in guiding the policyholder’s investments. The results suggest
that aggregated claims data can increase the net revenue of all firms, particularly in cases of
low security investment or high uncertainty, but these benefits are contingent on the insureds
employing diverse defensive configurations.

1 Introduction

Beginning in 2012, policy makers in the US and the EU began to investigate how the cyber insurance
industry might drive improvements in cyber security [1]. This attention supported early predictions
that the insurance industry would impact information security investment [2]. Insurers could affect
security investments decisions by sharing information about cyber attacks, by offering premium
discounts to encourage security investments, and even by demanding certain security controls be in
place to obtain coverage [1]. Some believe that widespread adoption could mean that “good security
[is] rewarded in the marketplace” [2]. Any impact that the insurance industry might have will be
compounded by recent forecasts suggesting that global revenues could grow beyond $2.5 billion1

today (late 2017) to $7.5 billion by 20202 and to $14 billion by 20223.
Thus far, research investigating the impact of the insurer in this role has been limited. Open

questions include: which strategies will the market structure allow the insurer to pursue? ; what is
the optimal strategy for the insurer to pursue? ; and are the insured’s interests protected in pursuing
such a strategy? Such questions seek to understand how a rational insurer might operate and
then consider the impact on the security posture of the insured. This line of thought speaks to Ross
Anderson’s suggestion that security researchers should ask “what’s the source of market power?” [3].

1https://www.pwc.com/gx/en/industries/financial-services/insurance/publications/

insurance-2020-cyber.html
2https://www.pwc.com/gx/en/industries/financial-services/insurance/publications/

insurance-2020-cyber.html
3https://www.alliedmarketresearch.com/press-release/cyber-insurance-market.html
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The ability of the insurer to observe claims across multiple policyholders is one such power. When
combined with the risk assessment conducted during the application process, insurers may be able
to link defensive posture (the quasi-independent variable) to economic losses (the quasi-dependent
variable). Throughout this paper, claims information is defined to be the collection of insights
regarding the effectiveness of defensive measures provided by these quasi-experiments. Insurers may
choose to share claims information with their insureds.

We consider how three market strategies an insurer might adopt can impact the policyholder: the
passive approach does not share claims information; the active approach shares claims information
about insureds with different security levels; and the diverse approach shares claims information
while deliberately maintaining diversity in the security posture of the insureds. Our aim is to
explore how each strategy affects both the insurer and the policyholder, paying particular attention
to whether their interests align. The contributions potentially have relevance to government policy
discussions, which have identified that cyber insurers already share insights from historic claims [1].

In Section 2, we outline how our contribution relates to research into investment models, as well
as considering existing work looking at the role of the insurer. Section 3 introduces the Iterated
Weakest Link (IWL) [4] investment model, which we extend to the context of cyber insurance in
Section 4. Section 5 simulates the results of the insurer adopting three different strategies. Section 6
discusses the context in which our results would be relevant and how they might be taken forward.
Section 7 concludes the paper.

2 Related Work

To evaluate research into how the insurance industry impacts information security investments, it
is helpful to distinguish between empirical and theoretical work. The former includes collecting
contractual documents, interviewing insurers and analysing market-level data, whereas the latter
is concerned with models to investigate pricing, simulate market dynamics and estimate correlated
risk.

In recent years, the growth of the market has created opportunities for empirical work. In 2015,
Biener et al. [5] extracted 994 cases of cyber losses from an operational risk database and asked
whether they were insurable losses. A number of authors have directly studied insurance policy
wordings to understand what coverage is available [6–9]. These studies ask what might be or what
is insurable, without considering how insurance impacts information security.

Franke [10] interviewed 15 insurance professionals based in Sweden. The findings suggest that the
insurer plays a role in guiding the policyholder towards adopting security controls, which supports
the assumption that purchasing an insurance contract changes how information security is managed.
However, a more detailed understanding and evaluation of the impact on security investment was
deemed to be out of scope.

Studies [1, 8] of insurance application forms have identified which areas of information security
the insurers collect information about. However, Romanosky et al. [8] suggest that only 33% of the
US insurers they analysed consider information security when pricing risk, which undermines the
conclusions from application form analysis.

Empirical work has identified what could be covered [5], what is covered [7,8,11], the attitudes and
practices of the insurance professionals involved [10], what security information is collected [8, 12],
and even how a price is calculated from the information collected [8]. Questions remain regarding
how each of these aspects affects the market and the corresponding effect on the insured’s investment
in information security.

Theoretical models may be better suited to answering such questions. This body of work sits
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within the field of information security economics, which was founded upon the realisation that
misplaced incentives can help explain why many security systems fail [13]. In this vein, several
authors [6,14] have conclude that insurers offering reduced premiums provide incentives for security
investment, which corroborates Schneier’s early predictions [2].

There have been many attempts to model different aspects of the insurance market. A unifying
framework is provided in [15], which draws a distinction between two aspects of the market. The
first such aspect is concerned with how security investments accrue benefits to all parties in a system,
not just the investor — particularly how these positive externalities can reduce the risk an insurer
faces [16–18]. Second, there have been various considerations of systemic risk, in which many firms
make insurance claims arising from the same event because of the interdependency of networks.

In [19], Böhme investigates cyber insurance from the perspective of the insurer and identifies the
correlated nature of cyber risk as an important consideration. In a subsequent paper [20], Böhme
and Kataria suggest that cyber insurance is most suitable for risks with high internal and low global
correlation. The authors conclude system managers should emphasise platform diversity — a theme
to which we will return in Section 6. However, they do not consider how the insurance industry
impacts investments in information security

Rather than extend an insurance model to include security posture, we could instead extend
an existing model of cyber risk in the context of the insurance industry. We look to investment
models that ask how much should an organisation invest in information security? Gordon and
Loeb [21] conclude that the answer depends on the shape of the ‘security breach function’. De-
termining which vulnerability to address involves comparing each vulnerability’s breach function.
Unfortunately, [21] does not contribute a simple method for identifying the security breach function
of a given vulnerability.

Böhme [22] suggests that a problem with the Gordon and Loeb model is the direct mapping of
security investment to vulnerability. Instead, a direct mapping from investment to ‘security level’,
which then stochastically maps to ‘benefits of security’, is suggested. The stochastic properties are
a result of the indeterminacy of the attacker behaviour, which is assumed to be constant in Gordon
and Loeb’s model.

Heitzenrater and Simpson [23] link security investments to (prevented) losses using the ‘Infor-
mation Security Breaches Survey’ [24], an annual survey to assess breaches in UK organisations.
The approach uses the survey’s loss data as a baseline and then considers how further investment in
various security products affects Annual Loss Expectancy (ALE), contributing a number of decision
recommendations that are dependent on the size of the business.

Both [21] and [23] consider a one-time investment that cannot change in response to observed
attacks. Böhme and Moore’s Iterated weakest link (IWL) model [4] allows a defender to adopt a
reactive investment strategy. The attacker’s behaviour is modelled stochastically and the defender
reduces uncertainty as this behaviour is observed. By introducing a parameter for uncertainty, the
model provides a rational explanation for perceived under-investment in security — the defender is
adopting a “wait and see” approach.

The IWL model provides three useful features for modelling the cyber insurance market: (i) an
appropriate format for security posture; (ii) the uncertainty parameter; and (iii) a temporal dimen-
sion. For (i), the binary choice between protecting a given vulnerability or not is in keeping with
the cyber insurance application process [12], which predominantly consists of yes–no questions. This
can be contrasted with models that assume continuous investment, such as [21]. For (ii), the inter-
views [10] and pricing decisions [8] have identified that insurers lack information about how security
controls relate to cyber risk. Indeed, uncertainty is one of the main challenges insurers face [25].
This can be contrasted with Gordon and Loeb’s model, which assumes perfect information about
the threat and vulnerability. Finally, (iii) allows one to model the insurer’s ability to observe attacks
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in claims data and share this information with policyholders.
We now introduce the IWL model in more detail.

3 The Iterated Weakest Link Model

There are three aspects to the Iterated Weakest Link model [4]: the rules, the strategy adopted,
and the computation. The rules define whether an attack will take place and the defender’s utility
conditional on that attack. The strategy determines the defender’s choice of defensive configura-
tion across multiple rounds. Finally, the computation involves calculating the expected utility for
adopting each strategy. We consider each aspect in turn.

3.1 The Rules

Utility is optimised by balancing the cost of security investments with the likelihood of suffering
an attack. The defender has perfect knowledge of the value of the asset a, the rate of return r on
the asset, and the cost of implementing a given defensive configuration. The loss if any of the n
vulnerabilities are exploited is fixed at za, where z determines the proportion of the asset that is
lost. The index i runs over the set of all possible defensive configurations. The probability of facing
attack pi for a defensive configuration, along with its cost ci, determines the expected revenue as

Ri = ra− piza− ci (1)

The probability of facing attack pi for each defensive configuration is determined by the true costs
of attack, which are drawn from xj ∈ Rn. The index j runs over the true costs of attack associated
with n vulnerabilities. The true cost of attack xj for each vulnerability is normally distributed
(truncated at zero) around the expected cost of attack x̄j :

xj = sup(0, χj) where χj ∼ N (x̄j ,
σ

∆x
) for j = 1, ..., n (2)

The defensive configuration di ∈ {0, 1}n describes whether the true cost associated with each
vulnerability x1, ..., xn is protected or not. We denote the k-th defense by dk. The cost of em-
ploying the defensive configuration di is determined by an n × n matrix C that reflects “possible
interdependent defenses” [4], so that ci = diCdi. The matrix is set such that

ci =
ρ

2
k2 + (1− ρ

2
)k where k =

n∑
i=0

di (3)

The interaction between the defensive configuration di and the true cost of attack xj determines
whether an attack will place. The k-th vulnerability is defined to be economically viable if the true
cost of attack xk falls below the ‘loot value’ (za) that the attacker gains. The IWL derives its name
from the assumption that the attacker will iteratively exploit the so-called “weakest link”, which is
the unguarded vulnerability with the lowest cost of attack.

Figure 1 describes a situation in which the defender following the expected cost would result in
the first three vulnerabilities being defended. Yet, the fourth and fifth would be unguarded and
economically exploitable, contrary to the defender’s expectations.

In the multiple round case, the cost of attack xj remains constant but the defender can choose a
different defensive configuration in each round. Changing configuration incurs a sunk cost, λa. The
defender can choose a defensive configuration based on information regarding attacks suffered in the
previous rounds.
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Figure 1: The true costs of exploiting the first, second, fourth and fifth vulnerabilities fall below the
loot value, za. As a result, there will be an attack unless these defenses are in place.

3.2 The Strategy

Böhme and Moore [4] assume that the defender is rational and will employ the defensive configuration
that maximises revenue. The defender is assumed to be risk-neutral. For a one-round game, this
reduces to choosing the defensive configuration with the highest expected utility. For a multiple
round game, we must consider how the defensive configuration will be adapted in light of information
about attacks.

Böhme and Moore [4] suggest that dk should not be “tinkered with” once a defense is in place.
Otherwise “the direct and indirect (ρ > 0) cost of the l-th defense has to be borne for all intermediate
rounds” [4]. If a vulnerability xl is attacked, then the defender gains the information that it is
economically viable. The optimal strategy chooses an initial defensive configuration and then places
reactive defenses in place only when a vulnerability is exploited.

If the cost of putting additional defenses in place becomes too large, it may be rational to accept
future attacks and dis-invest to zero defenses. Additionally, if sunk costs are particularly high, the
optimal strategy may involve accepting future attacks without changing the defensive configuration.
The next subsection describes how the expected utility for each starting configuration is calculated.

3.3 Calculation

If σ = 0, there is no uncertainty and the defender can directly compute the utility for each defensive
configuration. With σ > 0, the probability of attack when tmax = 1 is calculated as the proba-
bility that at least one unprotected vulnerability xk falls below z. As the true costs of attack are
independent of each other, we can calculate this as

P (Attack) = 1−
∏

xk∈B
P (xk > z) (4)

where B is the set of all unguarded vulnerabilities. As both the probability of attack and the cost
of defense are determined by the defensive configuration, the optimal starting configuration is the
defensive configurations di with the highest expected utility.
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In the one-round case, an attack takes place if the true cost of attack xj of at least one unguarded
vulnerability falls below the loot value za, whereas the total number of economically viable unguarded
vulnerabilities is important in the multi-round or dynamic case.

Böhme and Moore [4] model each unguarded defense xj as a Bernoulli random variable. Each
has probability of being exploited, given by

P (za > xj) = Φ(za;x1 + (j − 1)∆x,
σ

∆x
) (5)

The number of economically viable unguarded vulnerabilities tatt is modelled as a Poisson bino-
mial distribution with

µ =

n∑
i=k+1

pi and σ =

n∑
i=k+1

pi(1− pi) (6)

Böhme and Moore approximate this viaN (µ, σ), which is justified “for suitable parameter choices” [4].
Considering tmax rounds, there will be tatt ≤ tmax rounds in which the attacker is successful. The
total revenue, for tatt = i and initial defensive configuration k, is determined by

R(tatt, k) =

tatt∑
t=1

(ra− z − ct) +

tmax∑
t=tatt+1

(ra− ctatt
) (7)

As tatt is determined by the starting configuration d1, we can calculate the expected utility for a
given initial defensive configuration d1 with k defenses in place by:

U(k) =

tmax∑
i=0

P (tatt = i)R(tatt = i, k) (8)

This involves a contribution for each possible value 0 ≤ tatt ≤ tmax. The optimal initial defensive
configuration d1 is the choice of k = 1, ..., n that maximises U(k). Each round contains an addi-
tional sunk cost λa each time the defensive configuration is changed, but this does not change the
calculation.

To summarise, the IWL is a stochastic model that captures a defender interacting under uncer-
tainty with an attacker over multiple rounds. The best strategy for a defender is to only deviate
from an initial defensive configuration in response to observed attacks. These provide information
related to the true cost of defense of the exploited vulnerability. The true cost of attack is modelled
by random realisations of a normal distribution; to simplify calculating expected revenue, an ap-
proximation is used to calculate the likelihood of each realisation of these costs [4]. The next section
introduces how we extend the IWL to consider multiple policyholders making security decisions.

4 Extending the Model

Our extension, the Iterated Weakest Link – Cyber Security Insurance (IWL-CSI) introduces new
rules, new strategies and a new method of computation in extending the original model to consider
m policyholders purchasing insurance from a single insurer. In Section 4.1, we introduce those new
rules. We outline how the passive, active and diverse approaches translate strategies for the IWL-CSI
in Section 4.2. In Section 4.3, we demonstrate how Monte Carlo methods can be used to simulate
the IWL-CSI.
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Description Symbol Default Value
Busines Model
Number of insureds m 4
Asset value a 1000
Total number of rounds tmax 25
Return on asset per round r 0.025
Attacker
Number of threats n 25
Loss given attack (as a fraction of asset value) z 0.025
Expected minimum attack cost x̄0 15
Attack gradient ∆x 1
Level of uncertainty σ 1
Defender
The i-th defense of the j-th defender dij 0 or 1
Cost of each defense 1 1
Defense interdependence ρ 0.1
Sunk cost (as a fraction of asset value) λ 0

Table 1: Describing each of the parameters in the motel

4.1 New rules

The IWL-CSI introduces the parameter m to represent the number of policyholders that an insurer
may share claims information with. To model the insights gained from aggregating claims data, in-
formation about attacks against one policyholder must be relevant to the attacks other policyholders
might face in future rounds.

The IWL-CSI makes two assumptions: (i) the true cost of exploiting a given vulnerability is the
same for each defender; and (ii) the defenders can adopt different defensive configurations, which
the insurer influences. Both (i) and (ii) are strong assumptions that increase the value of claims
information and allow the insurer to mandate security controls respectively (although the passive
insurer will not use this power).

To understand (i), consider that network effects empower software monopolies [26], which leads
to a lack of so-called “cyber diversity” [27]. The result of policyholders adopting similar information
systems is that they share vulnerabilities. Consequently, if the insurer learns that the i-th vulnera-
bility is used to attack one insured, then that same vulnerability will be economically viable in other
insured’s systems.

We assume (ii) because diverse defensive configurations allow information about the attacker to
be shared and collective uncertainty reduced. For example, different organisations protect the same
operating system with different security products. The insurer is assumed to have control over which
defensive configurations are in place for each policyholder. Insurers have expressed a “desire” to
recommend security controls [1] and some insurers even offer “a list of actions to be taken” [10] to
improve security. Of course, this ability will be dependent on the wider market; an under-supply of
insurance allows the insurer greater freedom to select with whom they enter into contract.

To translate these assumptions into the model, we assume homogeneous defenders so that for
the j-th and k-th defender we have: aj = ak, tmaxj = tmaxk

, rj = rk, nj = nk, zj = zk, x1j = x1k ,
∆xj = ∆xk, σj = σk, ρj = ρk, and λj = λk. We will drop the index for each defender to ease
notation, unless using it provides clarity. Table 1 describes each parameter, along with the default
value.
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Passive Active Diverse
x1 x2 x3 x1 x2 x3 x1 x2 x3

Policyholder A o o o o
Policyholder B o o o o o
Policyholder C o o o o o o

Table 2: Illustration of the different strategies with m = 3.

Defensive costs related to the interdependence of controls employed by an organisation are de-
termined by an n×n matrix Cint (as in the original IWL [4]). Additionally, we introduce an m×m
matrix Cexti for each of the n possible defenses. These matrices reflect the extent to which defenders
can co-operate to take advantage of returns to scale, which may vary depending on the particular
defensive investment, dij .

The cost to the j-th defender of employing the defensive configuration dij is

Cj = dijCintdij +

n∑
k=0

bkCextkbk (9)

where bk ∈ {0, 1}m with bkt
= dkt

. The j-th element of bk represents whether the j-th defender
employs controls k. To remain in the scope of this study, the matrices Cexti are chosen so that
defensive costs scale linearly in the number of insureds, calculated using Equation 3. In Section 6.3,
we discuss how future work might modify this assumption to explore non-linear scaling.

As in [4], the attacker will exploit each defender’s unguarded vulnerability with the lowest cost
of attack, unless this is greater than the loot value, za. The true costs of attack are modelled as
follows:

xij = sup(0, χi) where χi ∼ N (x̄i,
σ

∆x
) for j = 1, ...,m (10)

Consequently, xij = xik for all i ∈ {1, ..., n} and j, k ∈ {1, ...,m}, where n and m are the number
of vulnerabilities and insureds respectively. To identify the “weakest link”, we must maintain an
ordering on the set of vulnerabilities and use the untruncated values χi to do so. If more than one
vulnerability had a true cost of 0, it is not clear which would be exploited first. For xil = 0 = xkl

,
we say that i is the weakest link if χi < χk, where the values of χi and χk are determined by
Equation 10.

4.2 Novel strategies

In this subsection we describe the strategies that characterise the passive, active and diverse ap-
proaches. These explore different approaches an insurer might employ to help determine which
controls are effective in mitigating losses. At a high level we can say that the passive insurer is
hands-off, the active approach ensures the policyholders have different levels of security, and the
diverse insurer maintains diverse security configurations among the policyholders. The active and
diverse approaches assume different levels of confidence in terms of where the attacks might land.
Each strategy is illustrated in Table 2.

As the passive insurer does not share claims information or mandate controls, we can assume
that each policyholder acts rationally by adopting the optimal defensive configuration. The game
reduces to the original IWL with m different policyholders facing the same realised true costs with
no ability to communicate with each other. Consequently, the policyholders can be expected to
adopt the same strategy as in the original IWL.
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x1 x2 x′1 x′2
Policyholder A x x
Policyholder B o x o x

Table 3: An illustration of how the ordering of xl and x′l impacts the realisation of attacks.

For the active insurer to share claims information, its policyholders must adopt different defensive
postures. Otherwise, they will each gain identical information about the attacker. We assume the
m policyholders have different security levels driven by some combination of premium incentives,
mandated controls or differing risk aversion levels. This assumptions is supported by evidence [8,10]
that insurance coverage is offered to applicants with different security posture (possibly at different
prices). This can be modelled by assuming that the i-th policyholder guards one more vulnerability
than the (i− 1)-th policyholder. If a given vulnerability is exploited in any policyholder, it will be
protected by every policyholder in the following round. This part of the strategy is facilitated by
the active insurer sharing claims information.

Finally, the diverse approach ensures the choice of defensive configurations maximises the amount
of information gained. Doing so would require the insurer to offer premium incentives or mandate
security controls as no rational defender would protect a vulnerability while one that was more
likely to be exploited was left unguarded. For the n most likely vulnerabilities to be exploited, the
i-th policyholder guards all n vulnerabilities apart from the i-th. Thus, if the i-th policyholder is
attacked, then the diverse insurer knows that the i-th vulnerability is economically viable to the
attacker. Consequently, the insurer can gain up to m pieces of information per round (one for each
policyholder), at the cost of each policyholder implementing different, and possibly more expensive,
defensive configurations.

We now turn to the calculation.

4.3 Calculation using Monte Carlo simulations

First we explain why the approximation used in the original IWL is not suitable for IWL-CSI
calculations. We then simulate the original IWL using Monte Carlo methods and validate the
results against those found using the approximation described in Section 3.3.

Since the attacker exploits the weakest link, the order in which vulnerabilities are exploited is
determined by the ordering of the true costs of attack. This was not important in the original
IWL [4], in which knowing the number of economically viable vulnerabilities is sufficient to calculate
the revenue of that realisation. Whether the vulnerability i is exploited in the (t − 1)-th or t-th
round does not affect the revenue. Consequently, expected revenue is calculated by approximating
a series of Bernoulli trials that represent the number of economically viable vulnerabilities.

The order in which vulnerabilities are exploited affects the revenue in the IWL-CSI. For example,
consider the two separate realisations of true costs of defense xl and x′l in Table 3. In both cases,
the expected true cost is x1 < x2, and x′1 < x′2, so policyholder B protects the first vulnerability.
However, the actual realisation is x1 < x2 and x′1 > x′2. Consequently, in the first case, the policy-
holders gain the information that both x1 and x2 are economically viable. In the second case, the
policyholders have no additional information as to whether x′1 is economically exploitable. Conse-
quently, the ordering of the true costs of attack impacts the IWL-CSI. However, the approximation
used in the original IWL does not account for this.

The next question is whether simulations provide an appropriate method for calculation. Sim-
ulating the IWL using Monte Carlo methods takes into account the ordering of vulnerabilities. To
validate this approach, we simulate one defender following the rules and strategy employed in the
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Figure 2: Average revenue of 107 Monte Carlo simulations compared to the expected revenue using
the method of [4].

original IWL (we consider multiple defenders in Section 5). If we were simulating the natural world,
we would have to choose an appropriate distribution. However, we are simulating the IWL, in which
the true costs are assumed to be normally distributed.

Figure 2 contains the results of 107 simulations of the IWL for the same parameter values as in [4].
The two methods broadly agree; as uncertainty increases, both expected revenue and the optimal
number of starting defenses fall. For low values of σ, the methods diverge around the optimal point.
Indeed, for σ = 1 the simulations suggest that the optimal starting configuration is different to the
results of [4].

Appendix A presents the standard error of the mean (SEM) for all of the calculations in Figure 2.
Even when uncertainty is at its highest, the SEM results do not exceed 0.01. The source of divergence
is most likely to be Böhme and Moore’s decision to approximate the number of economically viable
unguarded vulnerabilities as a Poisson binomial distribution [4].

However, we should not lose the forest for the trees. The IWL is not designed to be a predictive
model. Rather, it is designed to gain insights into the strategies different parties might adopt under
certain assumptions. Both the original computation and our simulations suggest that the optimal
number of starting defenses decreases as uncertainty increases; the original insight of [4] — that
sometimes it is rational to “wait and see” with security investments — holds true.

4.4 Summary

The original IWL consists of the rules, strategy and method of computation to consider the strategic
interaction between one defender and an attacker. In Section 4.1, we extended the model to consider
m defenders. Based on the new rules, we identified three separate strategies an insurer might employ

10



Figure 3: Average revenue for each of the three strategies based on 107 simulations with four insureds
and no sunk costs.

in Section 4.2. Then, in Section 4.3, we provided some validation for using Monte Carlo methods to
compute the original IWL and explained why simulations are better suited to computing the new
rules. In Section 5, we will use the new rules and Monte Carlo methods to consider strategies the
insurer of m policyholders might employ.

5 Results

We compare the average revenue of the three strategies in Section 5.1 and consider how these might
be priced in Section 5.2. In Section 5.3, we look at the variance of claims. We then explore the
impact of varying the number of insureds in Section 5.4. Apart from the parameters for uncertainty,
sunk costs and numbers of insureds, all of the simulations use the same values as in [4].

5.1 Comparing the passive, active and diverse strategies

The three strategies can be compared in terms of attacks suffered, defensive spending, or revenue.
Defensive spending is likely incurred by the policyholder, while attacks suffered may result in claims
paid out by the insurer. How these costs are divided between insurer and insured will depend on
the particular insurance contract, which we will look at in the next subsection. This subsection
compares the average revenue for each strategy because it reflects attacks suffered and defensive
spending without assuming a particular contract.

All of the results in this subsection are based on simulations with four insureds. With this
parameter value, the insurer can gain information related to a maximum of 16% of the vulnerabilities
per round (often the number will be less). The choice illustrates the differences between the three
strategies by choosing a middle road, as evidenced in Section 5.4, which varies the number of insureds.
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Figure 3 shows the result of 107 simulations without sunk costs. Displaying results like this
highlights the optimal initial defensive configuration for a given strategy. For high uncertainty
(σ = 16), it is still rational to under-invest and “wait and see” [4], but sharing claims information
does result in a higher revenue. For low uncertainty (σ = 1), investing less initially but sharing
claims information will result in higher average returns.

For risk-averse strategies involving high initial investment, the passive strategy becomes superior.
When the number of initial defenses (k) is high, observed attacks are less likely and there will be less
value in a strategy that uses information gained from observing attacks. However, these are strictly
sub-optimal and we will stop displaying these initial configurations as they result in lower revenue
than just accepting an attack every round. These diagrams are not well-suited to comparing the
passive, active and diverse strategies.

Figures 4 and 5 provide a comparison of active against passive and diverse against active re-
spectively. Figure 4 shows that using claims data is most beneficial when the policyholders begin
significantly under-invested and uncertainty is low. A policyholder not sharing claims information
suffers many attacks in working out which vulnerabilities are economically viable.

Sharing claims information is least beneficial when the defender invests heavily in defense and
uncertainty is low. The cost of maintaining diverse defenses is greater than the value gained by
observing attacks because so few attacks are observed. However, Figure 3 shows that high initial
investment will result in lower revenues and can only be justified by extreme risk-aversion.

Figure 5 compares the active and diverse strategies, which offer two different approaches to
gathering claims information. The diverse strategy is most effective when uncertainty is moderate;
the active strategy requires accurate forecasting of the ordering of the true costs of exploitation.
When uncertainty is low, the active strategy accurately predicts the ordering and so there is little
benefit in adopting the diverse approach. The diverse strategy can tolerate a threshold of inaccuracy.
It performs similarly to the active strategy when the threshold is exceeded, which occurs when
uncertainty is high and there is a low starting configuration.

Table 4 displays a number of security investment metrics. Broadly speaking, the active and
diverse strategies result in adopting a less secure initial defensive configuration with a higher gross
return. In every case, the passive strategy results in a higher attack intensity I, which describes the
proportion of rounds in which a policyholder suffers an attack.

The relative spend on security depends on the trade-off between the costs incurred making
predictions about which vulnerabilities might be exploited and the ability to adopt a less costly
initial defensive configuration, which must be incurred for all future rounds. When uncertainty is
high, the passive strategy spends less on security because it only defends the vulnerabilities that are
exploited. However, the passive strategy defends vulnerabilities that may not even be economically
viable when uncertainty is moderate. On the other hand, the diverse strategy under-invests initially
but gains information quickly, which results in a lower average security spend.

Different parameter values reward the balance between making no predictions as to which vul-
nerabilities might be exploited (passive strategy), relying on predictions as to which vulnerabilities
are important to defend (active strategy), and accepting these predictions are likely to be misguided
(diverse strategy). Without sunk costs, the active and diverse strategy achieve the same return on
security investment (ROSI) for moderate uncertainty (σ = 4), whereas the diverse strategy ROSI is
three times that of the active strategy for high uncertainty (σ = 16). In fact, the passive strategy
achieves a higher ROSI than the active strategy in this case. The active strategy is being punished
for the poor predictions as to which vulnerabilities are important to defend; these predictions are
poor because uncertainty is so high.

When sunk costs are introduced, the active strategy begins to achieve a higher ROSI than the
passive strategy even when uncertainty is high. Despite the active strategy’s predictions being
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Figure 4: Improvement in revenue gained by adopting the active strategy as opposed to the passive
strategy.

Figure 5: Improvement in revenue gained by adopting the diverse strategy as opposed to the active
strategy.
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Level of uncertainty
σ = 1 σ = 4 σ = 16

Strategy Passive Active Diverse Passive Active Diverse Passive Active Diverse
No sunk costs (λ = 0)
Optimal defense k∗ 10 9 9 8 6 6 0 0 0
Attack intensity I (% rounds) 2.7 1.7 1.5 10.0 5.4 4.6 45.5 33.6 30.0
SD of attack intensity σI 0.026 0.009 0.007 0.030 0.013 0.008 0.100 0.079 0.075
Avg. gross return (% asset) 33.5 33.7 33.9 32.3 33.2 33.3 26.2 26.7 26.9
Avg. security spending (% asset) 15.8 15.9 15.7 15.7 15.5 15.6 12.4 15.9 15.6
ALE0 0.68 0.43 0.38 2.50 1.35 1.14 11.4 8.4 7.5
ROSI (% security spending) 53.8 54.5 56.9 48.4 53.1 53.1 9.9 4.4 12.2
Loading factor limit l∗ 1 1.38 2.13 1 1.63 1.82 1 1.77 1.95
Total load limit L∗ 0 0.17 0.43 0 0.86 0.94 0 6.45 7.13
Sunk costs (λ = 0.025)
Optimal defense k∗ 10 9 9 10 9 9 0 0 0
Attack intensity I (% rounds) 2.7 1.74 1.53 7.1 4.9 3.7 45.5 33.7 30.0
Avg. gross return (% asset) 32.8 33.6 33.9 28.2 29.7 30.8 14.8 18.5 19.5
Avg. security spending (% asset) 16.5 15.9 15.7 19.9 19.1 18.3 23.8 23.1 23.0
ALE0 0.68 0.44 0.38 1.9 1.2 0.9 11.4 8.4 7.5
ROSI (% security spending) 47.4 54.3 56.9 16.2 24.7 33.6 -42.8 -28.2 -23.9
Loading factor limit l∗ 1 2.89 3.91 1 2.21 3.81 1 1.44 1.63
Total load limit L∗ 0 0.82 1.11 0 1.48 2.56 0 3.70 4.73
Memo item: No defense
Avg. gross return (% asset) 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
ALE1 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0 25.0

Table 4: The results of 107 simulations with and without sunk costs.

poor, the few that do gain new information mean the insureds need to make less costly defensive
configurations. Indeed, this is even more true for the diverse strategy in the case of moderate
uncertainty, which achieves twice the ROSI of the passive strategy. This suggests that sharing claims
data is especially valuable in guiding investments when it is costly to change defensive configuration.

It is rational to abandon all three strategies and accept a loss each round when sunk costs
are present and uncertainty is high. This is evidenced by the negative ROSI values for all three
strategies. The implication is that there are values of σ and λ for which the only rational way to
invest in security is if aggregated claims data can guide the investments.

5.2 Pricing

The pricing of each policy determines how the revenue is divided between policyholder and insured.
For each policyholder, the insurer should expect an annual loss expectancy of

ALE = (za)I (11)

per round. Consequently, the insurance premium will be priced at l.ALE, where l > 1 is a loading
factor to account for the insurer’s profit and operating costs.

If the policyholder purchases insurance, they will receive a return on the asset of ra minus the
insurance premium l.ALE and the cost of defense C:

R = ra− l.ALE − C (12)

This is to be contrasted to the case without risk transfer where the policyholder’s revenue is de-
pendent on the random realisation of attacks. A risk-averse policyholder might prefer to lose a

14



Figure 6: Distribution of claims for the passive, active and diverse strategies.
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guaranteed l.ALE rather than risk losing za, even if purchasing insurance results in lower expected
revenue than can be expected without purchasing insurance.

The insurer sharing claims information and guiding security investments may reduce the attack
intensity I sufficiently to offset the loading factor l. We define the loading factor limit l∗ to be
the point at which purchasing insurance does not change the expected revenue. If ALE1/C1 and
ALE0/C0 are the expected annual loss expectancy/cost of defense with and without the insurer
guiding investments respectively, then

λa− l∗ALE1 − C1 = λa−ALE0 − C0 (13)

Rearranging, the loading factor limit is given by

l∗ =
ALE0 + (C0 − C1)

ALE1
(14)

The total load limit L∗ is defined to be the amount of premium that remains after the expected
number of claims are paid,

L∗ = (l∗ − 1)ALE1 (15)

Table 4 contains the calculations of l∗ and L∗ based on the simulations. The results suggest that
the insurer can charge a higher percentage of the premium to cover operating costs and profits when
sunk costs are present. The value to the policyholder in sharing claims information is higher when it
is costly to change defensive configuration frequently. However, the size of the premium is far higher
in absolute terms when uncertainty is high, which is driven by the higher attack intensity. However,
the insurer must hold capital reserves to cover potential claims, which contributes an additional
cost. The next subsection investigates this aspect.

5.3 Measures of dispersion

Using Monte Carlo methods allows us to explore the dispersion of the results. We focus on the
distribution of the attack intensity (I) because it determines the variability of claims the insurer
faces.

Figure 6 highlights how the distribution of claims differs for the optimal starting configuration for
each strategy. Comparing the three figures shows that the passive strategy suffers more attacks for
each uncertainty value. As uncertainty increases, both the mean and variance of the attack intensity
increases. The insurer must hold more capital to account for the higher mean attack intensity and
additional capital must be held to account for the variance of the attack intensity. Alternatively,
the insurer may choose to purchase reinsurance to cover the tail of these attack intensities.

The passive strategy simulations illustrate how ordering is not important for the original IWL;
when σ = 1 the two bars capture the two cases when 0, 1 or 2 economically viable exploits are
left unguarded. Recalling that the passive strategy is equivalent to the original IWL, these results
suggest that the “wait and see” approach that was found to be optimal for high uncertainty in [4]
leads to a concerning variability in the number of attacks faced. Table 4 shows that both the mean
and the standard deviation of the attack intensity are lower for the passive and active strategies
for all uncertainty levels. This suggests that less capital would need to be held in reserve for the
strategies that involve sharing claims data.

5.4 Varying the number of insureds

The prior results show that sharing claims information is preferable to not sharing it. However,
the results have, with a few exceptions, not revealed a significant difference between the active and
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diverse strategies. This subsection does not display the results for the passive insurer because the
passive insurer does not share information. Consequently, the average revenue is the same for all
number of insureds.

Figure 7 varies the number of insureds, displaying the average revenue for the optimal starting
configuration for each parameter choice. The active strategy is optimal for between two and four
policyholders for all the uncertainty levels we consider. For the diverse strategy, the optimal number
of policyholders increases with the level of uncertainty. Figure 7 shows that for σ > 4, 16 policy-
holders leads to the highest revenue. In fact, the passive strategy outperforms the active strategy
when m and σ are high.

When m is high, the active insurer diversifies across 16 different security levels. High uncertainty
σ means that less information is collected because the ordering of true costs of attack is not as the
insurer expects. For example, the insurer gains 16 pieces of information if the ordering of true costs
is as expected. Suppose the true cost of attack xj , which is expected to be j-th in the ordering, was
actually the i-th lowest. Then, for defenders i through to j, xj would be left undefended and would
be exploited by the attacker. Thus only one piece of information is gained by the j−i defenders. The
more the ordering diverges from expectations, the less information is gained — yet the policyholders
expend a high cost in implementing the different security levels.

Figure 7 allows us to consider the marginal benefit of insuring another policyholder. When
uncertainty is low, insuring an additional policyholder will not significantly affect the average revenue
for either of the active or diverse approaches. The absolute difference between all numbers of
policyholders is less than 0.5 when σ = 1. As uncertainty increases, the marginal benefit diverges
for each strategy. For the active approach, there is a small gain in moving from 2 to 4 policyholders
and the marginal benefit of another policyholder is negative. However, for the diverse strategy, this
benefit is always positive for σ > 8 and for σ = 16 the difference between 2 and 16 policyholders is
four times that for σ = 1. The implications of these results in relation to market composition are
discussed in the next section.

6 Discussion

Our motivating concern is the ability of the insurer to aggregate claims information across numerous
multiple policyholders. In Section 6.1, we discuss the validity of the assumptions in the IWL-CSI
that characterise this ability. We then discuss how these results inform the optimal strategy for the
insurer to adopt in Section 6.2. Finally, we discuss future work related to IWL-CSI in Section 6.3.

6.1 Assumptions

IWL-CSI makes strong assumptions in order to gain insight into the ability of the insurer to aggregate
claims data. The assumptions break down into: (i) defenders are homogeneous and the cost to the
attacker of exploiting the same vulnerability in two different defenders is equal; and (ii) the insurer
influences the security posture of its policyholders. These assumptions may only be relevant in
particular contexts.

Assumption (i) might be relevant in the context of organisations in the same industry who rely
on similar service providers or off-the-shelf software. It is inappropriate if the policyholders have
different organisational profiles or deploy different information systems. For example, an attack on
an organisation holding financial data may be economically viable, but not economically viable on
an organisation holding less valuable data — rendering knowledge about attacks on the other as
useless.

17



Figure 7: Average revenue for 107 simulations with different numbers of policyholders and uncer-
tainty levels for the active and diverse strategies.
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Assumption (ii) depends on market dynamics. It is less appropriate in a ‘soft market’ charac-
terised by an over-supply of insurance. Insurers may not have the freedom to discriminate between
applicants based on their security posture, nor be able to mandate security controls, when the in-
sured can easily find coverage elsewhere. The next subsection discusses strategies the insurer might
adopt to take advantage of this market power.

6.2 Insurer strategy

The results suggest that an insurer sharing claims information will pay less in claims, as evidenced
by the lower attack intensity in Table 4. The ROSI calculations show this increased revenue results
from more efficient security investments. Further, sharing claims information reduces the variance
of claims meaning that insurers need to hold less capital in reserve.

However, achieving higher revenues relies on security investments being influenced by claims
data. Empirical work has shown that insurers do not seem certain about which security controls are
important, as two thirds of insurers in one study did not adapt premium prices based on security
controls [8]. Our results suggest that this may even be rational — when uncertainty is high, the
optimal starting configuration is no defensive investment. Perhaps insurers will begin to require
security controls as they observe attacks on their policyholders and discover which defensive measures
are effective.

Such a strategy is reliant on dynamically adapting the defensive configuration. In [1], the present
authors identified a number of mechanisms by which the insurer can influence security controls of
their insureds, which we call risk selection, incentivisation and integration.

Risk selection involves the insurer offering coverage based on the security level of the applicant.
These levels may result from risk-aversion and the premium may be dependent on the security level.
However, this approach cannot respond to attacks because the insurer cannot offer incentives to
invest in security until the insurance policy lapses.

Incentivisation involves the insurer offering premium discounts for adopting certain security con-
trols and these will indirectly lead to a market composed according to the insurer’s optimal strategy.
Again, security controls must be adopted dynamically. One solution that provides responsiveness is
dynamic risk management in which the price of the policy is frequently updated according to the
insured’s behaviour and external events, such as attacks on other policyholders.

Integration involves the insurer managing the insured’s security directly and is the most intrusive
mechanism. At present, we are not aware of anyone utilising integration to offer insurance and
security. It could be achieved either by insurers partnering with security companies or by security
companies offering insurance.

Each mechanism achieves a different level of responsiveness, highlighting the tension between the
insurer’s desire for adaptive security mechanisms and the insured’s distaste for intrusive obligations.
In the IWL-CSI the defender can adapt their defensive configuration every round. The corresponding
length of time in the real world is not clear; does the defender have to update every year, every
month or even every day?

This question depends on the change to defensive configuration. Unlike in the stylised IWL-
CSI model, security controls are not homogeneous and some may be more difficult to implement
than others. For example, secure software engineering investments may be more efficient in pre-
deployment [28] — long before the insurance policy has been purchased. This raises the concern
that the insurance industry’s incentives do not align with the insured’s long term interest — a
concern borne out in the security controls that cyber insurance application forms focus on [12].

Insurers discovering which controls are effective is by no means guaranteed. Collecting infor-
mation about the security posture of the insured presents problems in terms of the granularity of
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the information collected and the reliability of self-reported answers [8]. An application form may
report that a firewall is in place without specifying the monitoring processes, let alone whether it
is configured correctly. These issues are exacerbated by difficulties establishing the effectiveness of
these controls from post-event reporting. To our knowledge, no empirical work has established what
information is collected in the claims process, nor how this is used by insurers.

Another concern is whether all the policyholders achieve the same return. As the IWL-CSI
strategy relies on defenders adopting different postures, they will suffer different attacks and costs
of defense. This raises the question of which defender should adopt the most costly defensive
configuration or the one most likely to suffer attack. In theory this can be handled by the market;
the insurer should offer premium discounts to defenders adopting more costly defenses. However, it
would not be the first market failure in information security if this were not the case [26].

In spite of these concerns, cyber insurance is a desirable product, as evidenced by the growing
market. The active and diverse insurer can improve their return on security investments and achieve
greater expected revenue. But this does not consider the insurer’s operating costs in doing so. It
could be that, for low uncertainty, the small improvement in revenues by adopting the active or
diverse strategy is not worth the increased operating costs associated with doing so.

Market composition affects the total revenue across all the insureds. Under conditions of high un-
certainty, insurers can increase average revenue by taking on an increasing number of policyholders,
which raises competition concerns. This is consistent with the accounts stating that large insurers
see their claims data as a competitive advantage. Indeed, “insurers with a small amount of claims
data were (perhaps understandably) far more enthusiastic about data being shared” [1]. The results
suggest that under conditions of high uncertainty, the value of claims data may be such that the
marginal benefit of an additional insured drives the market composition towards monopoly. Again,
it would not be the first time incentives have tended towards monopoly [26]. However, this analysis
does not take into account the risk of aggregated losses which may push the market towards many
providers.

In the IWL-CSI, uncertainty and costs of defense are fixed for the entire game. However, in
reality these will change over time: organisations will adopt new information systems changing
the cost of attack and uncertainty regarding the attacker may rise or fall. The “technical flux of
change” undermines the utility of actuarial data over time [29]. There are two competing factors
here: (i) changing costs of exploit make old claims data less valuable, and (ii) old claims data may
reduce uncertainty about the attacker in future games. The former erodes the competitive advantage
of claims data over time while the latter strengthens it. For example, if one insurer holding a larger
share of the market leads them to operate with lower uncertainty than another, they can expect to
gain higher revenues. There could be a tendency towards monopoly in the market, depending on
the balance of (i) and (ii).

6.3 Future work

Investigating the role of aggregating claims information in cyber insurance is a novel research direc-
tion and many knowledge gaps remain. Empirical work could probe the validity of the assumptions
underpinning our extension of the IWL. The assumption that defenders are homogeneous could be
loosened by allowing their expectations regarding the cost of exploiting a vulnerability to differ while
still assuming the true cost of exploitation is the same across defenders. Data could be collected to
set more insightful parameter values.

Future work could introduce uncertainty into risk assessment and post-breach forensics. Rea-
soning about the trade-offs between information gained by the insurer and the burden placed on
the applicant may provide insights into phenomena like “race-to-the-bottom” cyber risk assessment
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standards [1] or information asymmetries [30].
Pricing risks correctly is but one concern of the insurer: they are also concerned with the aggre-

gation of claims [25]. The danger that many policyholders might claim at once provides an incentive
for insurers to diversify risk. Future work on the IWL-CSI could consider an insurer with a limited
amount of capital depleted each time a policyholder is attacked and build upon the variance of
claims analysis seen in Section 5.3.

While the IWL-CSI focuses on the insurer’s ability to share claims information, other investiga-
tions make considerations for the insurer’s shortcomings, such as: imperfect ex-ante assessment of
an insured’s defensive investment (adverse selection) [31]; inability to observe the insured’s engage-
ment in risky behaviour (moral hazard) [30,32]; and how insecurity, when combined with risk averse
insureds, increases demand for coverage in the insurer’s interest (the demand value of losses) [33].
Each line of study provides isolated insights. However, the “model of models” that can reason about
the effect of all of the insurer’s abilities and shortcomings in combination will be of most value in
analysing the impact of the cyber insurance market.

7 Conclusion

The IWL-CSI explores the interaction between security investment under uncertainty and the in-
surer’s ability to aggregate claims data. The simulations show that sharing claims information can
increase the average revenue of the policyholders in the IWL-CSI model, particularly when uncer-
tainty is high and initial defensive investment is low. Exploring pricing structures reveals that both
the insurer and the insured can benefit from this increased revenue, as well as the reduction in the
variability and the rate of claims.

Translating the strategies that are defined in terms of the IWL-CSI into business strategies
will be difficult. An insurer might reflect on how claims information could help insureds make
more effective information security investments, which may translate into a lower volume of more
predictable claims. Further, claims data from policyholders employing diverse defenses will be more
valuable, even accounting for the additional cost incurred as a result of maintaining this diversity.
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[19] Rainer Böhme. Cyber-insurance revisited. In Proceedings of The 4th Workshop on the Eco-
nomics of Information Security (WEIS 2005), 2005.

22
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A Error Bars

Standard Error of the Mean (10−3)
k σ = 1 σ = 4 σ = 16
0 1.59 3.17 4.86
1 1.65 3.28 4.95
2 1.71 3.39 5.03
3 1.77 3.49 5.09
4 1.83 3.59 5.15
5 1.89 3.65 5.20
6 1.95 3.68 5.22
7 2.01 3.67 5.23
8 2.07 3.60 5.24
9 2.09 3.48 5.22
10 1.86 3.28 5.19
11 1.20 3.03 5.13
12 0.48 2.72 5.06
13 0.12 2.38 4.98
14 0.02 2.02 4.86
15 0.00 1.67 4.72
16 0.00 1.34 4.56
17 0.00 1.04 4.37
18 0.00 0.79 4.16
19 0.00 0.58 3.90
20 0.00 0.41 3.61
21 0.00 0.29 3.26
22 0.00 0.19 2.85
23 0.00 0.12 2.35
24 0.00 0.06 1.68
25 0.00 0.00 0.00

Table 5: Standard error of the mean when simulating the original IWL for various values of σ.
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