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Abstract. Every day, security engineers cope with a flow of cyber security inci-
dents. While most incidents require routine reactions, few require orders of mag-
nitude more effort to investigate and resolve. It therefore remains unclear how
security operation teams in organizations should tune their response to handle
large flows of incidents and, at the same time, tame extreme events. Analyzing
the statistical properties of 60,767 security incidents collected over more than
six years at a large organization, we find that the distribution of resolution effort
induced by security incidents is in general skewed, following a power law tail
distribution with exponent ≈ 1.5. However, this distribution of incident severity
becomes less skewed over time, suggesting that the organization under scrutiny
has managed to reduce the impact of large events. Thus, the organization could
use the time saved to cope with a super-exponential increase of cyber security in-
cidents, while keeping human resources stable overall. We also find that the flow
of cyber security incidents triggers short-lasted effort spikes, which may be up to
2 orders of magnitude larger than median instant effort. Our results offer a first
quantitative reference point on how cyber security incidents may affect organi-
zations on the long term, and how organizations may adapt to efficiently absorb
cybersecurity shocks.

1 Introduction

Despite the large stakes currently associated with cyber security, unavailability of inci-
dent data has impeded the monitoring, analysis, and forecast of cyber risks at the level
of organizations. Information sharing initiatives are making progress,3 but at this time,
simple metrics about the rate and impact of cyber attacks have remained largely in-
accessible to researchers and to the broader public. Some publicly available databases
record cyber security incidents, but they are usually heavily biased towards incidents
that require public disclosure and large-scale incidents at major organizations that are
reported by the media [1]. Therefore, many open questions exist about the statistical
properties of cyber security incidents and their implications for the organization of se-
curity response. Fortunately, cyber security incident data are collected for the purpose
of auditing, compliance, and management [2]. These data can be leveraged to derive
risk metrics, which in turn may lead to more informed security management and in-
vestments [3]. Here, we present a statistical analysis of 60,767 cyber security incidents
spanning six years and two months that occurred at a large US organization.

3 For example, see information sharing initiatives in [1, 2].



Like many other natural [4,5] and manmade disasters [6,7], cyber incidents involve
extreme events [8,9,10]. Even if these events do not necessarily lead to existential dam-
age, they may have unintended consequences. For instance, at a large Internet company,
it was reported to the authors that the Heartbleed vulnerability4 required a team of more
than five expert security engineers over a whole week (i.e., approximately 250 hours)
to safely deploy the necessary patches across the infrastructure, with obvious disruptive
effects and delays on the normal workflow of cyber security incident management.5 If
even best equipped and security aware organizations are struggling with such extreme
events, one may question the ability of average organizations facing similar challenges
to quickly respond to critical incidents with enough manpower. Deciding how much in-
house human expertise versus outsourcing [11], risk acceptance [3] and transfer (e.g.,
insurance) [12], is becoming an increasingly relevant question for the management of
numbers of organizations.

In this paper, our objective is to bring quantitative insights on the relative weight
of a few large cyber security incidents, compared to a multitude of small events. In the
present data set, the 100 largest events (out of 60,767 events) account for 25% for the
cyber security incident response effort (thereafter, the effort in man-hours). Calibrating
the statistical properties of cyber security incidents requires extreme risk modelling,
which has been used to address other outstanding cyber security challenges, such as
heavy-tailed distributions of personal data breaches [8, 9, 10]. We find that cyber secu-
rity incidents tend to become overall less extreme over time. In particular, we illustrate
this latter point with lost or stolen devices (e.g., laptops), and we show how the organi-
zation studied here has addressed this challenge by implementing a full disk encryption
(FDE) policy. We find that the reduction of extreme events may have helped the organi-
zation build capacity to absorb (resp. consider) a much larger amount of cyber security
incidents with rather stable human resources. We also find that required effort is regu-
larly punctuated by jumps of excess effort, which frequency of occurrence given amount
of excess effort can be quantified. Finally, we show how the subsidiaries of the same
large organization exhibit time dependence in terms of event frequency.

The rest of the paper is organized as follows. First, we review background research
(Section 2). We then present the nature of cyber security incidents contained in our data
set (Section 3), followed by a description of the standard statistical methods (Section
4). We then turn to results (Section 5), discussion (Section 6) and conclusion (Section
7).

2 Related Work

Most research in cyber security is motivated by established flaws or potential incidents,
which may disrupt the normal operations of organizations active on the Internet. Typical
research perspectives include documenting the origins and failure mechanisms of cyber

4 See heartbleed.com for more information.
5 Private conversation with a security engineer at a large payment processing company.



security incidents [13], as well as their often non-obvious economic and social con-
sequences at people, organization, and country levels [14]. Popular security incidents
include software vulnerabilities [15,16], operation disruptions (in particular for critical
infrastructures [13]), personal and sensitive data thefts [8, 10] as a result of Internet at-
tacks [17], insider threats [18, 19], and human mistakes [20]. Most of these incidents
carry their own uncertainties regarding probability of occurrence and severity, which
most often remain hard to quantify since data are generally kept private by stakehold-
ers. In some situations however, organizations are legally required to disclose publicly
(e.g., personal data breaches), or given incentives to share security incidents with gov-
ernmental agencies [21]. In many cases, public release has brought better understanding
about the risks associated with these events [22, 23], such as robust statistical models
of personal data breaches [8, 10], and predictive algorithms of software vulnerabili-
ties [17, 20, 24, 25].

For other categories of cyber security incidents, the paucity of data has impeded
progress of collective understanding of these events. As such, it has limited the devel-
opment and widespread adoption of best practices, which would have the potential to
improve collective benefits in comparable ways to vaccination in epidemiology [26].
For the time being, most organizations have no requirement and usually no incen-
tive to disclose information about cyber security incidents, even though recording and
documenting these incidents has long been recognized as a critical part of IT secu-
rity [27, 28]. For instance, the US- CERT requires that certain information be recorded
and reported when an incident occurs on a federal information system [21] with some
clear guidelines.6 Therefore, many organizations record data in incident management
systems but may not fully leverage that information. Ahmad et al. [29] analyzed incident
management systems at a financial institution and found that miscommunication and or-
ganizational barriers prevented incident data from being best used. Therefore, academic
research is typically limited to either theoretical considerations or surveys about inci-
dents and practice, instead of data-driven empirical analyses [2]. Nevertheless, some
investigations have brought insights associated to cyber security incidents within orga-
nizations. In 2008, Condon et al. [30] published an analysis of security incidents at the
University of Maryland. However, the data consists primarily of malware incidents, and
only their frequency was studied but not their severity. Others have studied vulnerabil-
ity disclosures [31], or even the failure of financial information systems [32], but work
analyzing cyber incident data has remained scarce.

In this paper, we show how a longitudinal analysis of historical cyber security in-
cidents can be used to obtain probability distributions of incident severity, which we
measured here in man-hours of investigation, remediation and improvement. Kuypers
and Paté-Cornell have used these probabilistic outputs as inputs to quantitative risk
models to assess cyber risks in dollar terms by modelling the cost of incident inves-
tigation [33], and also reputation damage, business interruption, intellectual property
loss, and other costs [12]. The generation of these probabilistic inputs is critical, given
the heavy-tailed nature of some cyber incidents. Other cyber risk models have histori-

6 See also https://www.us-cert.gov/incident-notification-guidelines



cally used expected values of losses instead of probabilistic inputs, probably because of
data constraints [34, 35]. Models that use Monte Carlo simulations or other methods to
probabilistically assess risk provide much more information about cyber risks [36].

3 Data

The data set contains 60,767 cyber security events, which have occurred at a large or-
ganization based in the United States of America over 6 years and 2 months, between
November 2008 and January 2015. All recorded events were assigned a tracking num-
ber, the date of the incident, the number of systems impacted, the total number of hours
of investigation, the suspected attackers, other details about the incident, and a res-
olution date for mainly the 38,147 first events. All incidents were collected through
an incident tracking system, which is common in most mid-size and large organiza-
tions operating a security operations center (SOC). Information about events recorded
in ticketing systems have been manually entered by security officers. A specificity of
the data set used in this study are the records of effort in man-hours for each event,
which generally includes time spent remediating the incident. For example, the costs of
a malware infection investigation include the time that an analyst must spend to identify
the malware, wipe the hard drive, and reload a data backup.

The data contain a wide range of incidents, including lost or stolen devices, denial
of service attacks, network exercises, employee misuse, phishing attacks, malware in-
fections, and unauthorized access by attackers. In case of cyber attacks, the perpetrators
also represent nearly all categories of attackers, including insiders, hacktivists, crimi-
nals, and nation-states. Even though, each incident is unique in its nature, we can best
describe their nature at the aggregate level with seven categories:

1. Data spillages: Incidents that possibly disclose information to unauthorized indi-
viduals. For example, an employee could forget to encrypt an email that contains
social security numbers.

2. Email incidents: Any intrusion or attempted attack that originates through email
is classified as an email incident. For example, criminals may try to extract a user’s
email credentials to use their account for sending spam (e.g., phishing), or attach
malicious files to an email to infect a user’s machine with malware.

3. Lost or stolen devices: Laptops, tablets, phones, and other hardware can be lost or
stolen. These incidents typically require different levels of investigation depending
on device type and encryption level.

4. Tasks: Incidents caused by network exercises, wide scale patching, or investiga-
tions (such as pulling log files) meant to aid an audit or an inquiry (e.g. pulling an
employee’s emails after allegations of harassment).

5. Website incidents: Any attack that exploits websites operated by the organization
is classified as a website incident, including website defacements, SQL injections,
and server compromises.

6. Web browsing and USB incidents: Malware that does not originate via email or
through a website is categorized as a web browsing/USB incident. For example, a



user may inadvertently download malware while visiting a compromised website.
Users may also spread malware via USB devices. This category excludes malware
delivered via email.

7. Other: While other types of incidents occur, many are not frequent enough to fall
into a specific category. For example, denial of service attacks and insider attacks
occurred very rarely at the organization that we studied. False alarms and near
misses were also reported. We consider this class of events as a category by itself,
despite its heterogeneity. This, however, limits the conclusions that may be drawn
from a specific analysis of this category.

These categories have been established in accordance to the perception of the co-
author who cleaned the data. The method used for cleaning used a combination of (i)
incident labels, (ii) regular expressions matching key words and phrases, (iii) manual
review. The data contained incident categories, some of which were broken out as spe-
cific categories (e.g. DDoS attacks were explicitly labeled). Sub-tags were in use in
some cases as well (e.g. stolen laptop). Further tags could be used to categorize more
incidents (for example, some incidents had a malware family label, which helps catego-
rize the incident). This incident label technique was useful to categorize roughly 80%
of the records. Next, we looked for strings that we could match. For example, any inci-
dent containing laptop and stolen could easily be categorized as a lost device. Similar
string matching categorized another 19%. The remaining 600 incidents were manually
categorized by reading the incident description.

The categories obviously carry their load of subjectivity. Yet, they help bring a qual-
itative description of the events that have occurred over the span of the data set. Overall,
the data offer a comprehensive view of the human resources deployed by the organiza-
tion over a long period of time. They illustrate how this effort is distributed to tackle a
large spectrum of cyber security incidents. The frequency of incidents is taken into ac-
count and their severity is measured as effort in man-hours. The time spent by security
engineers (and other people who may be involved in subsequent crisis management and
mitigation) may not be the only source of monetary costs of cyber incidents. Yet, we
believe that the expenses of human resources represent a best-effort proxy of the effort
required to overcome these incidents.

In addition, our data set contains information regarding different sites (respectively
subsidiaries) by the large organization. We shall inspect the relevant statistical proper-
ties of each site, as well as their mutual dependence for the 15 sites for which we have
more than 250 events recorded.

4 Method

Nowadays, most organizations face a continuous flow of cyber security incidents, in-
cluding external attacks, insider attacks, maintenance (e.g., patch deployment) or stress
testing tasks (e.g., vulnerability assessments). These incidents occur with frequency and
severity that we measure here as the effort required to overcome the incident. Here, we



observe that resolution effort of some events are orders of magnitude larger than the me-
dian incident severity. The severity and the frequency of large events relative to average
events is determinant and must be appropriately quantified [37].

4.1 Accounting for qualitatively different events

Our statistical method is crafted to account for the existence of 3 levels of event severity
as observed in our data set: (i) small routine events, (ii) heavy-tail large events, and (iii)
extreme outliers, which presumably stem from qualitatively different incidents [38]. For
each type of incidents, we quantify the evolution of their frequency and severity over
the six years by segmenting the data into 12 time periods of approximately 6 months,
then analyzing them at the aggregate level.

4.2 Evolution of incident frequency and severity & return times

The community interested in extreme risks has long discussed the nature of tail risks
and some popular methods have been developed in the past to identify the model that
best fits heavy-tailed random samples [39, 40]. The usual point of debate is whether an
extreme risk is actually extreme and bound to become more extreme over time (namely,
with no statistical moment defined), or on the contrary, whether there is an upper limit
of severity (see [10] for a study of personal data breaches, as a concrete example of an
extreme, yet bounded risk). Overall, fitting extreme distributions is a challenge because
statistics usually build on the law of large numbers, while extreme events are by def-
inition rarely observed and, as such, sampled over large periods of time. A variety of
tools, such as Extreme Value Theory (EVT), have been developed to assess the proba-
bility of an extreme event beyond observations [41]. These tools are particularly useful
for the (re)insurance industry, because they bring robust forecasts about the maximum
claim amount resulting from a large disaster, allow predictive models to be developed,
and help compute competitive insurance premiums [42]. Here, we observe that event
severity follows a power law tail distribution given by,7

P (S ≥ s) ∼ 1

xµ
, (1)

where s is the severity and µ its exponent, within the boundaries defined by the lower
threshold, and for values smaller than the outliers. Based on empirical evidence ev-
idence (see Figure 2), we assert the hypothesis that one cannot rule out that the tail
data were drawn from the power law. Given a sample, we find the best fit using maxi-
mum likelihood estimator (MLE) [8,39,40]. Goodness-of-fit is obtained by performing
Monte Carlo simulations of synthetic data sets with the same parameters and size (boot-
strapping method), and by using the Kolmogorov-Smirnov (KS) test, which measures
the maximum distance between the model and the generated distributions [43]. The p-
value is obtained as the ratio of KS statistics for the synthetic data sets whose value
exceeds the KS test for the real data set; therefore, the larger p, the more accurate the

7 Note that f (x) = 1/xµ implies log (f) = −µ · log (x), therefore the linear relationship in
double logarithmic scale.



model’s description of the data. We chose a relatively conservative level (p >0.1) as the
rejection level for the null hypothesis [40]. The outliers are detected by removing ex-
treme values, until p >0.1 for the tail distribution of the main power law (i.e., until we
can reject the null hypothesis). If more than a couple of outliers are present, we attempt
to fit an outlier tail regime, with a power law model [10]. To account for the evolution
of risks, we repeat the distribution fitting exercise over time periods of 6 months, which
are sufficiently fine-grained to capture change with large enough sample for proper fit-
ting. We additionally also measure the evolution of percentiles effort from fine-grained
monthly bins.

4.3 Return times

We recognize that arrival of new events of sufficiently large severity (effort S ≥ 6
man-hours) follows an exponential distribution. Therefore, the underlying process fol-
lows a memoryless Poisson process, and with arrival rate tested and varying at various
thresholds.

4.4 Cyber security incident activity across sites

We first check the consistency of statistical properties across sites, and we then measure
the activity dependence between sites. For this, we use Spearman rank dependence
measurements [39]. These dependencies shall inform on the probability that a change
of regime may affect multiple sites at once. Our approach demonstrates a prototype of
portfolio management for cyber risks [39].

5 Results

Establishing ground for sound quantitative risk management requires to study the sta-
bility and the possible evolution of frequency and severity variables, as well as relevant
dependences between these variables. With a data set of 60,767 cyber security incidents
at a large organization, we uncover the statistical features associated with the manage-
ment of cyber security incidents, as well as their evolution over the course of 6.2 years,
a rather long period in the short history of the Internet. This section is organized as
follows: (i) we show how the frequency of events has experienced a super-exponential
increase and how the frequency of cyber security event type has evolved. (ii) We study
the evolution severity S (i.e., effort to resolve cyber security incidents in man-hours)
over time, which find to evolve positively and become less heavy-tailed with time. For
the sake of concreteness, we illustrate this evolution with a case study on the deploy-
ment of full-disk encryption (FDE) and how it has influenced positively risk manage-
ment by reducing mitigation efforts associated with lost (respectively stolen) devices.
(iii) Like for other risks (e.g., natural disasters), managers may want to measure return
time of events above a severity threshold. We provide such return times for cyber secu-
rity incidents for the large organization under scrutiny. (iv) The heavy-tailed nature of
cyber security incident severity triggers large sudden jumps of effort above the baseline



work activity. We aim to understand how these jumps influence hourly workload. We
find that baseline work is very stable, however, with sharp sudden jumps, which we call
“excess effort”. We find that this excess effort follows a power law tail distribution with
exponent αpos ≈ 1.41. (v) We finally investigate the dependence (i.e., correlations) of
event frequency between 15 sites (respectively subsidiaries) with more than 250 events
over 6.2 years at the large organization. Our results show how quantitative risk metrics
(i.e, frequency x damage) could also help build cyber security risk portfolios across sub-
organizations (within an organization) and across organizations, e.g., within a specific
industry or country.

5.1 Evolution of cyber security incidents frequency

Figure 1B shows the evolution of event count (binned per month) per category of events
(cumulative). While the first half of the 2008 until 2015 period was dominated by in-
cident associated with malware from Web browsing and USB (purple), the second half
period exhibits the rise of stolen devices (dark green) and incidents associated with
websites (light green). These dynamics of event frequency show that the prominence
of some categories tends to be replaced by emerging categories. Figure 1A shows the
overall evolution of event counts (binned per week). The increase follows a super-
exponential growth with finite-time singularity given by [44, 45, 46],

f(t) ∼ (t− tc)ν , (2)

with ν = 0.52 and tc = 6. Finite-time singularities are the hallmark of positive feed-
back loops. In the context of cyber security incidents, finding such acceleration of event
frequency is rather unexpected. This phenomenon can be attributed to capacity building
at overall constant human resources: the reduction of large events frequency released
available resources for the absorption of more – less severe – events.

The distribution of cyber incident resolution effort can be characterized by three
regimes: (i) low effort incidents (less than 2 man-hours of work), (ii) a main tail sec-
tion, well represented by a power law distribution, and in some cases, (iii) a transient
outlier tail regime, also well described by a more extreme power law distribution with a
smaller exponent. Figure 2B shows the Complementary Cumulative Distribution Func-
tion (CCDF) of all incidents that occurred during the 11th time period. The CCDF de-
termines the probability that an event will cost more than a given amount. For instance,
there is approximately 1% (resp. 0.1%) chance that an event involving more than 10
(resp. 100) hours of work will occur. The tail distribution shown in Figure 2B is best
described by a main power law tail P (C ≥ c) ∼ 1/cµ , with µ = 1.80 ± 0.06, for 0.5
<c <30, and an outlier tail regime with µ = 0.8 ± 0.5, for c ≥ 30. The outlier regime
is of particular importance: while the main tail has an exponent µ >1 with its first sta-
tistical moment (i.e., average) defined, the outlier tail (µ <1) has no statistical moment
defined. In other words, as more events get sampled, new even more extreme events
are likely to appear, pushing the average towards larger values as a result of the outlier
regime. Note that these outlier regimes are transitory over the 12 periods considered.
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Fig. 1. A. Evolution of event count (binned per week). The increase follows a super-exponential
growth with finite-time singularity given by equation 2 with ν = 0.52 and tc = 6. B. Evolution
of event count (binned per month) per category of events (cumulative). While the first half period
was dominated by incident associated with malware from Web browsing and USB (purple), the
second half period exhibits the rise of stolen devices (dark green) and incidents associated with
websites (light green).

Cyber security and cyber threats are rapidly evolving, with new vulnerabilities an-
nounced on a daily basis. Over the six years of our data set, changes in security safe-
guards, network structure, and security processes have occurred. However, the distri-
bution of effort is consistently well accounted for by a power law model (see Table 1).
Furthermore, we find evidence that all incidents taken together are overall becoming
less extreme over time. Figure 2A shows the distribution of all events greater than 2
man-hours over the time periods from 1 to 12. The exponent µ governing the skewness
of the tail distribution of the power law for the severity of incidents is generally increas-
ing over time (meaning that incidents are becoming less extreme). This suggests that
the organization has become more efficient at dealing with large cyber incidents. The
CCDF represented in Figure 2A shows that the distribution becomes less heavy-tailed
(and thus less extreme) over time. For typical frequencies 10%, 1%, and 0.1% from
the main tail distribution (i.e., disregarding outliers), effort has been reduced by respec-
tively, 2, 40 and 600 man-hours in the six-year time frame considered (i.e., between
periods 1 and 12) and up to statistical fluctuations as reported in Table 1.

A comparison of small versus large incidents shows that over time, more resources
are being devoted to smaller incidents. For instance in period 5, there are more small
events (1,026) than tail events (688); yet, the tail events generated over 5 times more
investigation hours. In presence of outliers, the aggregated costs are even more skewed
towards extreme values. Consider period 8** in which 3,355 events generated 11,774
hours (491 days) of work: the 14 most extreme events (each having required more than
41 hours of work) account for 5,284 hours (i.e., 220 days), and among them, the most
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Fig. 2. A. Evolution of the complementary cumulative distribution function (CCDF) of effort for
all incident types. B. The CCDF of investigation time for all incidents in the 11th time period.
Note the three regimes: small incidents (here for effort <0.5 man-hours), the main tail (blue
dotted line), and an outlier tail (magenta dotted line). C. Case study: implementation of Full-Disk
Encryption (FDE) and its dramatic effect on the tail distribution.

Table 1. For large events, the power law model cannot be rejected (p-value <0.10), with the ex-
ception of periods 4, 8, and 11 (highlighted in orange), for which extreme outliers were detected.
In period 4, two points deviate from the main tail regime, while for 8 and 9, an outlier tail regime
is made up of several points, whose statistical properties are also best explained by a power law.
For periods 4, 8 and 11, we provide a corrected model to account for the main tail (*) and outlier
tail regime (**).

extreme event alone accounts for 2,762 hours (i.e., 115 days) of work.

Historical cyber incident data can also be used to validate empirically some security
investment decisions [6]. The organization studied here implemented full disk encryp-
tion (FDE), which increases the difficulty of extracting information from lost or stolen
devices by requiring a password before a computer boots. Most data breach notification
laws in the US States do not require breach notification when stored information was
fully encrypted. We observed and measured the effects of FDE on lost-device investi-
gation times by observing that the outliers disappear after the FDE policy was imple-
mented (see Figure 6). The whole pre-policy distribution is not well fitted by a power
law tail (cyan + red lines, p <0.10 implies that we cannot reject the null hypothesis
that the sample is not drawn from a power law) because an outlier regime exists (red



line, µ = 0.52, p = 0.46). Comparing the distribution of severity before FDE policy im-
plementation without the outliers (purple line, µ = 1.89, p = 0.79), and the distribution
post-FDE implementation (blue line, µ= 1.85, p = 0.43), one cannot reject the hypoth-
esis that they are both drawn from the same distribution. In other words, we have some
evidence that the FDE policy has removed the outlier regime, which accounted for 45%
of the overall time spent on lost devices. Based on a careful qualitative assessment of
descriptions provided for outliers by security engineers at the organization, we found
that devices that contain sensitive information (such as personally identifiable informa-
tion, trade secrets, or other intellectual property) are not very common, but require an
overwhelming amount of work, associated with investigation (e.g. analyzing backups,
performing forensics, and/or notifying individuals of the breach). Assuming that the
outlier tail regime has disappeared, we can state that the time spent on stolen devices
has been reduced by a factor 4 (due to the removal of outliers), meaning that full disk
encryption in that case has been a very cost-effective prevention measure.

Fig. 3. Evolution of the effort required (binned per month) considering percentiles 50, 75, 90, 95,
99, 99.9 (dashed lines) in logarithmic scale on the y-axis. Percentiles provide a measure of the
evolution of extremeness, which appears here to decrease starting from 2012 for all percentiles
above 50. The straight lines exhibit the exponential decays of the higher percentiles as detailed in
Table 2.

We finally aim to calibrate the decay of large events over the period 2012 until 2015.
Figure 3 shows the evolution of the effort required (binned per month) considering
percentiles 99.9, 99, 95, 90, 75, 50 (dashed lines) in logarithmic scale on the y-axis. All
high percentiles above percentile 50 decay following exponential functions,

N(t) ∼ e−Λt , (3)

with Λ the decay rates detailed in Table 2. The excellent fits of exponential decays of
high percentile events is striking. They provide a measurable and predictable learning



curve for the organization under scrutiny. This learning curve shall be useful to predict
the increase of absorption capacity in the future.

Percentile decay rate [1/days] p R2

99.9 0.34 0.000 0.43
99 0.20 0.000 0.71
95 0.21 0.000 0.83
90 0.18 0.000 0.83
75 0.16 0.000 0.83
50 0.05 0.000 0.33

Table 2. Exponential decay rates for percentiles above 50.

5.2 Recurrence intervals of events

At the aggregate level and over the whole time period, we investigate recurrence in-
tervals, which are a very common measure in quantitative risk management [39], in
particular for natural disasters [47] such as earthquakes [48]. Recurrence intervals are
the expected time before an event of given size repeats. Here, the rate of all incidents
increases dramatically (see Figure 1A). Yet, most of this increase is driven by events
that require little effort (i.e., less than 2 hours). For larger events, the recurrence inter-
vals remain overall stable. We find that the distribution of waiting times between two
events of effort thresholds S = {6, 12, 24, 48, 168, 720} man-hours follows a exponen-
tial distribution,

P (T > t) ∼ e−λt (4)

which describes a memoryless Poisson point process with mean return rate β = 1/λ
[47]. For all effort thresholds s, we tested the Poisson process hypothesis. For that, we
calibrated the exponential distribution of waiting times between two events using or-
dinary least square of log(P ) as a function of t. For all effort thresholds, the Poisson
process hypothesis cannot be rejected with high significance (see Table 3).

The results in Table 3 show that while an event of 6 man-hours effort returns on
average every 3 days, an event of 24 man-hours returns on average every 24 days.
Similarly, an event of seven days (24 × 7 = 168 man-hours) returns on average every
5.5 months, while an event of 100 days returns on average every 16.6 months. These
results may contradict the above results, which show an exponential decay of events
with percentiles above the median. Here, calculating the return times was made over the
whole 2008 until 2015 period, and extreme events represent a minority of events and
influence only marginally the overall recurrence of events above much lower thresholds
S.



Effort [man-hours] Recurrence intervals [days] p R2

> 6 2.99 0.000 0.98
> 12 8.02 0.000 0.99
> 24 24.17 0.000 0.91
> 48 41.87 0.000 0.99
> 168 153.91 0.000 0.95
> 720 465.97 0.000 0.96

Table 3. Return times for events with effort> 6 man-hours. For these thresholds, the memoryless
Poisson process hypothesis cannot be rejected with very high confidence (in all cases p < 0.001
and R2 > 0.90).

5.3 Resolution time, effort & excess effort

Another key aspect of the cyber incident dynamics is the relation between resolution
time, effort, and excess effort (effort above the baseline). Figure 4 shows the relation
between resolution time ∆T and effort S. Extreme events [percentiles 99.9 and 99.99
(resp. yellow and black dashed lines)] are around or above the line S = ∆T , which
means that large events tend to be resolved with an effort equivalent to having one per-
son working 24× 7 hours, or having several security officers occupied full time during
office hours to resolve the issue. The less effort is required, the even more likely the res-
olution time will largely exceed required effort. This shows that security officers tend to
give highest priority to extreme cyber security incidents. On the contrary, the less effort
they require, the more resolution time may be delayed.

We also aim to investigate the dynamics of cyber security event arrival and resolu-
tion times. Unfortunately, for 22,620 incidents (out of 60,767 incidents) the resolution
time (i.e., when the ticket is closed) is missing. For these events, effort was recorded
(in man-hours), suggesting that resolution occurred, even though tickets were not for-
mally closed. These events for which tickets are not formally closed all start around
November 2012, when new reporting guidelines were introduced at the organization,
mandating opening a ticket for any cyber security incident or event. These guidelines
have created extra administrative reporting burden, in particular for events that required
little effort. This systematic lack of data accounts for nearly a third of the data set, which
is significant if we want to understand workload at the aggregate level. We therefore as-
sume that these incidents were actually resolved, however not formally closed, and we
reconstruct the missing resolution time by bootstrapping. For that purpose, we employ
a non-parametric approach and we randomly sample resolution time values from the
subset of the data with both effort and resolution time available. This is equivalent to
drawing values from a random variable defined by the probability of resolution time
given effort P (∆T |S).

Figure 5 exhibits the dynamics of new cyber security events (red), resolved events
(green), as well as the weekly mean of resolution times ∆T (blue). The dynamics of
event resolution follow closely the dynamics of new event arrival [Spearman rank cor-
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Fig. 4. Relation between effort S and resolution time ∆T in double logarithmic scale from all
events for which both S and ∆T were recorded (i.e., 38,147 events). The black continuous line
shows the relation S = ∆T as a reference. The dashed lines show the percentiles (50th and
above) effort as a function of resolution time. The blue line shows event counts as a function of
resolution time. Most events have resolution times between 10 and 100 hours.

Fig. 5. Time series (weekly binned) of new cyber security events (red), resolved events (green),
as well as the weekly mean of resolution times (blue). The dynamics of event resolution follow
closely the dynamics of new event arrival [Spearman rank correlation ρ = 0.799 (p < 0.001)].
The resolution times exhibit an increase in the second year and at the end of the third and during
the fourth year, and decreases sharply from the fifth year.

relation ρ = 0.799 (p < 0.001)]. The mean resolution times exhibit an increase in the
second year, as well as at the end of the third year. It decreases sharply from the fifth
year. This sharp reduction of resolution time (as well as effort per event) is one the
central explanation for the unique capacity building, which was required to absorb a
super-exponential increase of cyber security events.



We aim to bring fine-grained insights on the hourly dynamics of cyber security
events, and how much effort they require at the aggregate level when they are summed
together over time. For that, we assume that effort is uniformly distributed over the
resolution period. Therefore, the instant effort is given by S/∆T over the period from
Topen,i until Tresolved,i for any event i. The total instant effort is obtained by summing
all uniform efforts over all events. Note that our method to measure instant effort over-
looks the typical daily, weekly and yearly seasonalities associated with human activity.
We assume 24x7 SOC activity. Figure 6 show instant effort (binned hourly) for Jan-
uary 2012 (Figure 6A) and for year 2012 (Figure 6B). The monthly and yearly scales
were chosen to best exhibit the features of instant effort. These panels reflect the whole
period under scrutiny. Instant effort exhibits a stable baseline activity, decorated with
spiky patterns. To better understand the time series and its regularities, we shall separate
both features. To efficiently separate baseline activity from large deviations the smooth-
ing is performed by computing the median activity in the 24-hour centered window. The
baseline instant effort is extremely stable over the 6.2 year study period with median
effort 1.82 men per hour (5th and 95th percentiles baseline instant effort respectively
equals to 0.72 and 3.49 men per hour).

We now turn to excess effort beyond the baseline. In order to absorb sudden changes
of effort triggered by the arrival of a new event, it is essential to quantify the excess effort
beyond the baseline effort. For that, we consider the difference between the instant
effort (red) and the smoothed instant effort (blue) as a random variable, from which a
value is drawn every hour. Figure 6C shows the distribution of positive variations (red),
which follows a power law tail with exponent αpos = 1.41(4) obtained by Maximum
Likelihood Estimator (MLE). As a consequence, there is 3.8% (resp. 0.15%) chance that
an excess variation of 10 (resp. 100) men per hour will occur within one hour. We further
tested dependence between excess effort and baseline effort. We found no statistically
significant dependence. As a result, it seems that excess effort is not related to high or
low baseline effort. For completeness, negative variations are also shown on Figure 6C.
Because the distribution of instant effort is skewed and the smoothing is performed with
median values, it is expected that negative variations shall be highly centered, which is
indeed what we observe [power law tail with αneg = 2.98(9) obtained by MLE].

5.4 Event frequency dependence across sites

The organization under scrutiny has multiple sites (resp. subsidiaries). These sites have
various degree of autonomy regarding cyber security incidents. No qualitative informa-
tion is available for that matter. It is of importance to understand how different sites of
a same organization differently or similarly absorb cyber security events. We follow a
simple portfolio management approach commonly used to measure aggregate risks of
portfolio financial products [39]. For that, we measure rank correlations of time series of
event counts (weekly bins) between 15 sites with more than 250 events over 6.2 years.
Figure 7 shows the correlation matrix across sites, with sites ordered by decreasing
number of events (see Table 4). The 9 sites with most cyber security events exhibit high
dependence (Spearmann rank correlation 0.24 < ρ < 0.60), in particular sites 1, 2, 3 in
comparison with site 0 (ρ ≥ 0.50). These results suggest that sites share common cyber
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Fig. 6. A. Hourly (red) and smoothed effort during January 2012. Smoothing is performed by
taking the median activity on a rolling window of 24 hours. The median ensures that baseline ac-
tivity is well separated from the large spiky excursions of positive effort variations. The smoothed
effort exhibits high stability over the 6.2 years of data with media, 5th and 95th percentile effort
respectively equal to 1.82, 0.72, 3.49 men per hour B. Similar time series for the whole year
2012, which is comparable to the whole period of the data set. C. Rank-ordering (i.e., unnor-
malized complementary cumulative distribution function) of effort variation above (resp. below)
the smoothed effort. Both distributions exhibit power law tail distributions with exponents resp.
αpos = 1.41(4) (xmin = 1 and p = 0.82) and αneg = 2.98(9) (xmin = 0.4 and p = 0.82).
Both fits were obtained with Maximum Likelihood Estimator (MLE) and confidence intervals
were obtained by bootstrapping following [8, 10, 40].

security incidents, which may hit all sites at the same time. High dependence may also
be associated with top-down propagation of cyber security notifications, or rather with
horizontal information sharing and coordination across sites.

site 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
events 20,459 7,252 5,026 4,997 4,659 4,515 4,233 2,577 1,871 1,100 1,045 867 782 751 386

Table 4. Number of events recorded per site over the entire period of 6.2 years.

6 Discussion

We have analyzed 60,767 cyber security events and incidents recorded at a large orga-
nization over a six-year and two months period. In addition, we had access to the effort
required to overcome each event (in man-hours).

Our study has unveiled a number of stylized facts associated with the flow cyber
security incidents and their resolution by the security operations center (SOC). We first
found a super-exponential increase of events recorded in the tracking system. Some
categories of events were relatively more prevalent in the first years, and then replaced
by other types of security incidents. While the number of events recorded increased,
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Fig. 7. Spearman rank correlation weekly event count between the 15 sites with more than 250
recorded cyber security events over 6.2 years.

we found that human resources devoted to cybersecurity incidents has not significantly
increased over time on average (1.82 men per hour on a 24x7 basis). In a nutshell,
it appears that the organization under scrutiny has managed to build capacity super-
exponentially at nearly constant human resources at the SOC.

We investigated the origins of this dramatic performance increase and we found that
the organization managed to reduce the frequency of large and extreme tail events. We
brought a variety of perspectives to test this hypothesis. We first noticed that the overall
tail distribution of cyber security incident resolution effort is overall best modeled with
a power law distribution with exponent µ ≈ 1.5, yet increasing over time (i.e., the dis-
tribution is getting less extreme). The tail distribution was periodically decorated with
so-called dragon-king large outliers [38, 49]. Each of these outlier events may amount
to large proportions of effort over the same period. These outliers were successfully
tackled by the organization. For instance, we could show how the implementation of
full-disk encryption durably removed risks associated with data spillage. We comple-
mented the study of the evolution of the tail distribution, by a non-parametric longi-
tudinal study of percentiles above the median (i.e., large and extreme events), and we
found that from 2012 on, they decreased exponentially. The decrease of extreme event
frequency may have created capacity to manage more events of smaller size, following
a positive feedback loop, which may explain the super-exponential increase of events
(see Figure 1A).

We have then investigated the fine-grained dynamics associated with the hourly
management of cyber security events. We found that the baseline of human resource ef-
fort remained very stable between 0.72 men per hour (5th percentile) and 3.49 men per
hour (95th percentile) over the 6.2 years. Yet, the hourly effort is decorated by jumps
which size is a random variable. The random variable is well represented by a power



law tail with exponent αpos = 1.41(4). The statistical properties of the tail distribu-
tion of jump size imply that the mean converges while the second moment diverges
as n → ∞ [47]. These excess effort jumps require thorough quantification, and shall
be taken into account for cyber security incident response. Absorption of larger shocks
requires preparedness and adequate provision of human resources for emergencies in
addition to baseline effort. The human resource effort may suddenly jump to 10 men
per hour (with probability 3.8% per hour) or to 100 men per hour (with probability 0.1%
per hour).

We have finally touched upon portfolios of cyber security incidents. As the orga-
nization under scrutiny has several sites (resp. subsidiaries), we could compute the de-
pendence of event frequencies between sites with a sufficient number of events (i.e.
≥ 250). We have no knowledge whether the organization under scrutiny has a central-
ized versus a decentralized management of cyber security incidents. We could find that
the frequency of events on the site with most events influences more than 50% of the fre-
quency of events in the 3 next sites by ranking order in terms of event frequency. Also,
the 9 sites with most events are overall highly dependent, suggesting some form of cen-
tral organization or at least a common information sharing channels. The 6 remaining
sites are much less dependent between each other and with the 9 sites receiving most
events. This suggest that these sites are more autonomous regarding the management
of their cybersecurity. They may also be less exposed. Or on the contrary, the may be
managed with less efficiency. Much more investigation is certainly needed to build a
solid risk portfolio theory for cyber security, but we can already draw some relevant
conclusions from this prototype regarding organization resilience.

Risk accumulation is one of the top topics in the nascent, yet fast-growing, cyber
insurance industry, and organizations shall be concerned similarly at their own scales.
A large organization typically holds tens or even hundreds of subsidiaries. Let’s con-
sider that cyber security is partly centrally managed and partly locally managed. The
level of autonomy of subsidiaries may depend on the efficiency adjusted to the risk port-
folio. Both efficiency and risk portfolios can be adjusted in several ways, but there is
usually a trade-off. On the one hand, by delegating security, one may get more locally
optimized response, but may risk inconsistent cyber threat response with potential im-
plications depending on information system interconnectedness between subsidiaries.
On the other hand, centrally managed cyber security may increase dependence between
subsidiaries, and generate long-term fragility and difficulties in provisioning response
resources. Similarly, more centrally managed information systems bring more opera-
tional efficiency. However, they are certainly more homogeneous and thus, they may
generate more dependence of cyber security events across subsidiaries.

The risk portfolio management approach also demonstrates that measuring the dy-
namics of effort to overcome cyber security incidents encapsulates information, not
only about the technical challenges associated with cyber security, but also on how hu-
mans in charge can handle them. Behind the time and effort spent on solving a security
event, there are humans with various levels of technical background, expertise, eager-



ness to learn with agility and ability to recognize outstanding challenges. Again, more
research is needed to bring further supporting evidence, but it is striking to see how
the security officers at the organization studied here seem to have produced impressive
return-on-scale. We believe that learning is one aspect, but quite surely capacity to use
programmatic approaches (e.g., full-disk encryption) to durably reduce effort associ-
ated with tackling events of similar nature, certainly has played a key role in building
capacity. We shall therefore propose that security officers as individuals, but also or-
ganized teams, as well as their capacity to deploy programmatic responses to security
challenges should receive much more research attention. In other words, the human
factor is not only related to users, but primarily to the cognitive capabilities, expertise,
incentives and psychology of the very humans in charge of cyber security.

Finally, we would to stress that aggregates through statistics have immediate ad-
vantages for managing cyber risks. For instance, the risk portfolio approach allowed
comparing different sites without knowing any detail on the technical aspects of cyber
security events. Instead of subsidiaries, the same principle could be used to manage
cyber risks of a portfolio of suppliers at the aggregate level, without knowing in much
details the technical operations associated with cyber security. Statistics may be privacy
preserving in this case. Many cybersecurity practitioners recognize the lack of common
language and dialogue between executives, in particular the Chief Risk Officer, and
technical cyber security teams. We propose that knowing how security officers handle
cyber security events provides the essential part of information needed to take appro-
priate management and risk provisioning decisions, while avoiding micro-management.
Measuring performance from ticketing systems, may however require to set proper in-
centives and clear guidelines to avoid reporting moral hazard and other biases.

6.1 Limitations and future work

In this exploratory work, we believe we have only scratched the surface of the potential
associated with studying the dynamics of human resource effort devoted to cyber secu-
rity events. The three main limitations are (i) theoretical, (ii) empirical, which in turn
does not allow to deepen on (iii) organization design challenges. From a theoretical per-
spective, we first still lack a general mechanism, which would explain the reduction of
large and extreme events and how shock absorption increases. Second, a proper theory
of cyber security incident portfolio management shall be developed. Once overcome,
these two theoretical challenges deserve further empirical testing, possibly with addi-
tional and more complete data from other organizations. For instance, our data only the
human resource effort for incident (resp. event) resolution, but does not consider poten-
tial additional costs, such as operation disruption or litigation. We also could not get a
clear sense of urgency associated with events. In the future, we could for instance envi-
sion running sentiment analysis from natural language processing of event descriptions.

Establishing a benchmark between organizations is also one of our future work pri-
orities. Is the organization studied here of its own kind or our findings generalize? What
difference shall we expect within and across industries, or perhaps regarding physical



proximity, software proximity (use of similar software) or homogeneity of talents re-
cruited across organizations?

We also believe that quantitative results that depict the individual and collective
behaviors of security officers at such fine-grained level has the potential to inspire fur-
ther targeted research regarding incentives, cognition, and psychology on this group of
individuals.

7 Conclusion

Organizations are constantly subjected to cyber attacks, incidents, and other cyber se-
curity events. Absorbing the flow of incidents at sustainable costs is paramount to max-
imize resilience. Here, we have uncovered a surprising virtuous circle, as the organi-
zation under scrutiny has successfully managed to reduce the frequency of large and
extreme efforts that require the mobilization of important human resources. These sig-
nificant gains have allowed managing a super-exponential increased number of inci-
dents and events. At a finer-grained level, we could quantify the stable baseline human
resource effort deployed by the organization, as well as the probability of excess instant
effort as a power law tail distribution with exponent close to 1.4. These results provide
precisely quantified statistical measures, which could be used to optimize organization
design regarding cyber risks. Considering that the organization under scrutiny had sev-
eral sites (resp. subsidiaries) to which events could be attributed, we have developed
a prototype of cyber risk portfolio and we have discussed how this approach may sig-
nificantly improve cyber risk management, namely by using quantitative risk portfolio
models. If sufficiently easy to deploy, these quantitative models may replace qualitative
approaches in the future. We believe that the approach presented here is simple enough,
yet highly informative, and thus, may be broadly adopted in a not so distant future.
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