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ABSTRACT
The security of software is becoming increasingly important.
Open source software forms much of our digital infrastruc-
ture. It, however, contains vulnerabilities which have been
exploited, attracted public attention, and caused large �nan-
cial damages. This paper proposes a solution to shortcomings
in the current economic situation of open source software
development. The main idea is to introduce price signals into
the peer production of software. This is achieved through a
trading market for futures contracts on the status of software
issues. Users, who value secure software, gain the possibil-
ity to predict outcomes and incentivize work, strengthening
collaboration and information sharing in open source soft-
ware development. The design of such a trading market is
discussed and a prototype introduced. The feasibility of the
trading market design is corroborated in a proof-of-concept
implementation and simulation. Preliminary results show
that the implementation works and can be used for future ex-
periments. Several directions for future research result from
this paper, which contributes to peer production, software
development practices, and incentives design.

CCS CONCEPTS
• Security and privacy → Economics of security and
privacy; •Human-centered computing→Open source
software; • Software and its engineering→Open source
model;
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1 INTRODUCTION
In today’s world, software is ubiquitous and will become
even more so with the advent of the Internet of things. The
importance of software security cannot be overstated.

Software systems have evolved to be large, decentralized,
dynamic systems where the model of computation is one of
continuous interaction with other large systems and with the
world. This rapid increase in software size and complexity
has given rise to massive ine�ciencies and errors. A 2002
study estimated the annual cost to the U.S. economy of soft-
ware errors alone at approximately $59.5 billion [41]. More
recent �gures on cyber risk paint a graver picture. Global
costs of cyber crime have been estimate to lie between $799
billion and $22.5 trillion (1.1% to 32.4% of global GDP) [18].
Insecure software can be traced back to the incentives �rms
face to release software early and achieve network e�ects.
After all, �rms can release security updates later. It has also
been shown that software producers tend to release security
updates later than is socially optimal [42]. Anderson argues
that information insecurity is partly due to a failure in the
design of incentives [1].
Open source software forms much of our digital infras-

tructure and has enabled the boom in startups [19]. Peer
production, the mechanism behind the development of open
source software is an organizational innovation where indi-
viduals, in a diverse and distributed community, self-match
to the tasks best suited for them [9]. Peer production has
successfully tackled complex, uncertain projects, underlying
billions of dollars in open source software production [43]. A
recent study, however, points out that this digital infrastruc-
ture is increasingly under strain [19]. Escalating demand and
a lack of adequate resources has resulted in security breaches
and service errors [19]. Earlier economics research foresaw
these types of real-world problems. Kooths et al. [30] assert
that the absence of price signals in open source development
means that users’ valuations remain unknown. Therefore
the supply of and demand for open source software goods
do not fully align.
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In fact, software quality today seems to be below the level
preferred by users and developers alike. That is, users are
willing to pay to avoid the risks of using software that is
broken or missing functionality, and developers are willing
to �x and upgrade software if compensated. Thus, there
appears to be a failure of market design, and an opportunity
to design better market mechanisms to incentivize a higher
quality equilibrium in software production. This leads to the
research question that motivates our work:

How can a market design incorporate price sig-
nals into peer production, facilitate information
sharing, and promote quality?

In this paper we make progress towards answering this
question. We present our vision and preliminary work on a
futures trading market for �nding and �xing software issues.
Participants in our market can create futures contracts to pre-
dict whether these issues will be addressed, hedge the risks
to which they are exposed by using defective software, and
incentivize work. Users, developers, testers, project main-
tainers, investors, and others in the software ecosystem can
trade on questions such as: will a bug be �xed? or will a vul-
nerability be found? Our design incentivizes the discovery
and resolution of software vulnerabilities and bugs, but is
not restricted to these. Rather, our platform is broad in scope
and can be used for various events and tasks in the software
ecosystem, including design, documentation, code reviews,
and so forth.
Issues of software quality (proper design and execution)

and security (preventing unauthorized access to data and
systems) are both classi�ed as software defects. With increas-
ing use of open source components in software1, a quality
issue “upstream” in the software development process can im-
ply a security issue “downstream”. For example, �aws in the
ImageMagick image processing software that are an inconve-
nience on desktop, become security risks when ImageMagick
is integrated into a web application [26]. In the absence of
any signals, the maintainers of the upstream project may not
know that the integration of their components (including
any bugs residing therein) may put the downstream project’s
users at risk.
Bug bounty programs have existed since 1995 and are

the state of the art for reporting vulnerabilities. Open source
bounty systems o�er rewards for reporting and �xing known
bugs. Marketplaces for software tasks include crowdsourcing
platforms for open source bounties (e.g., Bountysource [13]),
crowdsourcing contests (e.g., Topcoder [52]), and crowd-
funding sites (e.g., Kickstarter [29]). However these market
mechanisms have limitations that we address with a novel
market design based on trading futures contracts. This is

1A recent audit found open source components in 96% of applications
scanned [10].

the �rst work to apply the concepts of futures trading to a
software market setting.

2 RELATEDWORK
Research on software economies has advocated a market-
based approach where supply and demand determine the
allocation of work and in�uence the evolution of the sys-
tem [6, 7]. An equilibrium in the software economy is one
where all issues for which there is enough value have been
addressed. Rao et al. [46] consider the problem of how to
incentivize deep �xes in a public software economy. They
design market mechanisms that use externally observable
information only in determining outcomes and payments. A
mean �eld equilibrium methodology is used to evaluate the
performance of the mechanisms in simulation. A theoretical
analysis of the model establishes the existence of an equilib-
rium [45]. The present paper extends this line of research
but has a di�erent focus. Here, the objective is to introduce
price signals in a peer production market while facilitating
information sharing and collaboration.
Market-based approaches in incentivizing vulnerability-

reporting have been considered. Schechter [49] presents a
vulnerability market where the �rst person to disclose a par-
ticular security �aw is o�ered a reward. The reward increases
in value if no one steps forward to claim it. The product can
be considered secure enough to protect information worth
the combined value of all such rewards o�ered at a particular
moment in time. Ozment [44] maps this type of vulnerability
market to an open �rst price ascending auction. Although
vulnerability markets as well as existing bug bounty pro-
grams (e.g., the Mozilla security bug bounty, and the “Hack
the Pentagon" bug bounty program [54]) provide incentives
to report �aws, users’ valuations for �xes are not captured
in these systems.
The role of incentives with respect to di�erent aspects

of information security and privacy has been studied, and
various policies have been proposed for the improvement
of these aspects [2, 3, 16, 28, 33, 36, 50]. However, these
works do not consider the design of a futures trading market.
Hosseini et al. [23] consider the problem of e�cient bug
assignment. In their model, the bug triager is an auctioneer
and programmers are bidding agents in a �rst-price sealed
bid auction. Bug triaging is but one of several software tasks
that a futures trading market can address.
The characteristics of various contest architectures have

been examined [4, 15, 17, 38, 39, 53]. Contest architectures
have been used in the design of software marketplaces such
as Topcoder, but function unlike futures markets. There is a
large body of work on prediction markets [20, 22, 32, 40, 48].
However, our futures market di�ers from prediction markets
in several ways as we explain in Section 3. Other papers
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have considered software from the perspective of technolog-
ical innovation [11, 31], and the design and modularity of
software [8, 35].

Much software development is organized in peer produc-
tion communities which have their own economic rules.
Benkler [9] describes the emergence of what he refers to as
commons-based peer production. He explains that in a net-
worked world, information may be produced and exchanged
cheaply and e�ciently. Unlike in �rms, where the human tal-
ent that can be harnessed is mainly limited to its employees,
peer production is able to take advantage of a diverse and dis-
tributed community, with various creative skills. Individuals,
with private information regarding their skills, match them-
selves to the tasks best suited for them. Benkler argues that
as projects become increasingly more complex and uncertain,
it becomes more important to harness diverse motivations,
including intrinsic as well as extrinsic rewards, because a
clear measure of e�ort can no longer be determined.

Lerner and Tirole [34] study four cases of peer production
and propose economic models to explain the motivations of
open source contributors. Johnson [27] describes a model of
open source software as a public good, where developers in-
cur a private cost to contribute and obtain a private valuation
whenever any improvement is made. The paper establishes
technical conditions that characterize when a developer will
choose to contribute. Athey and Ellison [5] present a model
to capture the dynamics of open source contribution. They
assume that programmers are motivated by both their own
need to use the software as well as altruistic feelings involv-
ing the bene�ts to the community. At any point in time, the
open source software meets some subset of the total set of
needs, and the measure of this subset is termed the “quality"
of the software. The authors show that, depending on the
model parameters, the dynamic system can reach one of two
steady-states from almost any starting conditions: a zero
quality and zero altruism state and another state where the
zero quality, zero altruism as well as positive quality, positive
altruism states can exist.

Current market-based platforms
Examples of market-based platforms for software develop-
ment include Bountysource, which is a funding platform
for open-source software [13]. Here, users post bounties or
rewards on issues they want addressed while developers
create solutions and claim rewards. Once a reward is made
available, a developer picks the issue he wants to tackle and
begins work. The developer submits a claim once the work is
done. There is a two week veri�cation period during which
backers vote to accept or reject the claim. If the claim is
accepted the developer receives the reward. Otherwise the
bounty is refunded. Bountysource also organizes fundraisers
for costly new features requiring a signi�cant investment

of time and e�ort. Kickstarter is a global crowdfunding plat-
form that collects money from the public to fund various
projects, including software projects [29].

Topcoder is based on crowdsourcing contests and has over
a million active members [52]. Companies with software
needs are matched to a global community of programmers
who compete in a contest with cash awards to provide the
best solution that can address a client request. The Topcoder
community works on a variety of tasks from bug �xes and
features to design and analytics.

Bountify [12] is another platform based on crowdsourcing
contests. It focuses on coding tasks. A client posts the task
and the associated reward. Programmers must submit solu-
tions before the reward expires. The client decides which
is the best solution and awards the reward to the winner.
Interestingly, the client is not refunded if none of the submit-
ted solutions is acceptable. Instead, the reward is donated to
charity.
Rather than supplying coding solutions, Bugcrowd [14]

is a bug bounty platform for security vulnerabilities that
has a crowd of workers at its disposal. The crowd tries
to uncover vulnerabilities in a client’s software. The client
only rewards workers whose vulnerabilities are judged to be
valid, regardless of the e�ort expended. A similar platform is
Hackerone [21]. In addition to supplying a crowd of hackers
to uncover vulnerabilities, Hackerone assists organizations
to deploy and manage bug bounty programs.

For a survey of crowdsourcing for software development
and the related literature, see [37]. Our approach addresses
the same issues in a new way as we show in the next section.

3 OUR APPROACH
Recall that the research question that we consider in this
paper is:

How can a market design incorporate price sig-
nals into peer production, facilitate information
sharing, and promote quality?

To this end, we propose a futures trading market for elic-
iting information and incentivizing tasks. The next example
illustrates a simple case of how such a market might work.

Example 3.1. User Adam �nds a software bug. Adam has
heard of a futures trading market where he can get the bug
�xed for a price. Adam documents the bug in an issue tracker
(now identi�ed as bug #1337) and goes to the trading market.
Adam creates an o�er with a maturation date in two weeks
for a payout of $200. Adam buys 200 units — $1 potential
payout each — at a unit price of $0.8, paying $160, by deposit-
ing the money into escrow. Developer Beth sees the o�er,
has time to �x bug #1337 within two weeks, and decides to
accept the o�er. Beth buys the 200 units at a unit price of
$0.2, paying $40, by depositing the money into escrow. The
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contract is now formed: Adam owns the UNFIXED position
and Beth owns the FIXED position. Two weeks pass, during
which Beth is working on the �x and Adam is waiting to
receive it. On maturation there are two possible outcomes:
bug #1337 has been �xed or remains un�xed. If bug #1337
is �xed then the issue is closed. Beth earns the reward of
$160 and gets her $40 deposit back. If bug #1337 is un�xed
then the issue remains open. Beth loses her $40 deposit while
Adam receives his and Beth’s deposits, earning $40.

In the same way that a user can o�er to pay for a �x (Exam-
ple 3.1), a user can o�er to pay if a vulnerability is found in
a speci�ed software project by the maturation date. That is,
the user would create a FOUND o�er. The possible outcomes
would be that the vulnerability is FOUND or UNFOUND.

The basic idea of the market is that participants can cre-
ate contracts to predict outcomes and incentivize work. A
contract is associated with outcomes which can be veri�ed
in an issue tracker. On maturation, the contract pays out to
the owner of the position corresponding to the issue’s status
in the issue tracker.

Comparison to existing markets
Although inspired by existing market mechanisms, such as
open source bounty systems and prediction markets, our
design departs from these in several ways. Bug bounty pro-
grams, open source bounty systems, and other crowdsourc-
ing approaches to software work typically reward the re-
porter of a vulnerability or the submitter of a �x. However,
software development is often done in a collaborative fashion,
where a �nal solution builds upon the input of others [24].
Further, a task may require di�erent areas of expertise and
necessitate the input of di�erent individuals. In these ap-
proaches there does not seem to be a way to assign credit to
all contributors of a �nal submitted report or solution. As
a result, contributors may be less motivated to collaborate
and share information. This limitation is addressed by a fu-
tures market because a participant may do partial work on a
contract and resell his position (see Example 3.2).
Open source bounty systems also have extra transaction

costs of claiming bounties. Bounties must be resolved inde-
pendently of the �xed or un�xed status of the underlying
bug in order to determine whether the work done by the
bounty claimer is relevant. In contrast, participants in our
futures trading market invest in outcomes which are deter-
mined by the status of issues in an issue tracker. Participants
may create more expressive contracts (for example, entailing
dependencies) to satisfy their requirements. Moreover, open
source bounty systems fail to incentivize meta work as re-
wards must be explicitly divided among multiple testers, bug
triagers, and developers instead of letting the system han-
dle it. Bug bounty programs that reward the discovery and

disclosure of vulnerabilities do not capture the valuations of
users for �xes.
Prediction markets tend to have a small number of ques-

tions but a large number of participants (“wisdom of the
crowd"). Here we have a large number of futures contracts
but a small number of participants per future contract (“wis-
dom of individuals" revealed to crowds of software users).
Participants in a prediction market typically cannot in�u-
ence the outcome whereas bug futures draw participants
who have information about that bug and thus may a�ect the
outcome. Prediction markets aggregate information whereas
bug futures additionally incentivize tasks.
Why do we call it a futures trading market? Because the

contracts have similarities to futures contracts. First, there
is a quoted price on the market place for the expectation
that an issue will (not) be closed at a speci�ed future date.
Second, the price of entering a contract is equal to zero but
a deposit into escrow is required for the maximum possible
loss from the futures contract. Third, at any time before the
speci�ed future date, the owner of a contract can leave the
contract and receives the di�erence in price since he entered
the contract and the deposit back. Fourth, at the speci�ed
future date, the owner of a contract pays with his deposit
for the expected outcome (e.g., issue closed or vulnerability
found) or receives his deposit and that of the counter-party.

Design features
Before describing implementation details we discuss some
key features in our design of a futures trading market.

Partial work. Trading behavior allowed in a futures market
supports collaborative work, as the next example shows.

Example 3.2. As before (Example 3.1), Adam ($160 for the
UNFIXED position) and Beth ($40 for FIXED position) enter
into a futures contract worth a payout of $200 in two weeks
depending on the status of bug #1337. One week later, Beth
realizes that she does not have the expertise to fully �x bug
#1337. Beth decides to submit a partial �x and sell her FIXED
position. Charles buys the 200 units of the FIXED position
from Beth at a unit price of $0.4, paying $80 to Beth. Beth had
paid $40 and receives $80, earning $40 for her partial work.
Another week passes, during which Charles is working on
the �x. On maturation there are two possible outcomes: Bug
#1337 has been �xed or remains un�xed. If bug #1337 is �xed
then the issue is closed. Charles earns the reward of $200
for a net gain of $120. If bug #1337 is un�xed then the issue
remains open. Charles receives nothing but loses the $80
paid to Beth, while Adam receives his and Beth’s deposits
from escrow, earning $40. In both cases, Beth earned $40.

Many problems can only be solved by drawing on dif-
ferent areas of expertise. For example, a bug may require
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Contract

Statement: bug #1337 fixed
Maturation: 2018-06-18

Unit Value: $1.00

Escrow
$200

UNFIXED Position
Price: $0.80

Units: 20
User: Adam

FIXED Position
Price: $0.20
Units: 200
User: Beth

FIXED Buy Offer
Price: $0.20
Units: 200
User: Beth

UNFIXED Buy Offer
Price: $0.80
Units: 200

User: Adam

FIXED Sell Offer
Price: $0.40
Units: 200
User: Beth FIXED Position

Price: $0.40
Units: 200

User: Charles

UNFIXED Position
Price: $0.70
Units: 200
User: Bob

UNFIXED Sell Offer
Price: $0.70
Units: 200

User: Adam

FIXED Buy Offer
Price: $0.40
Units: 200

User: Charles

UNFIXED Buy Offer
Price: $0.70
Units: 200
User: Bob

Example 3.1

Example 3.2 Example 3.3

Figure 1: Graphical display of a futures contract, demonstrating how the elements of the contract �t together and evolve over
time. A contract with its statement, maturation, and unit value make up the root. Underneath it, many escrows and positions
can be created. Money is paid into escrow when �xed and un�xed buy o�ers match. Positions record ownership and can be
resold independent of the original contract partner. Examples 3.1, 3.2, and 3.3 provide the rational for how the contract evolves.
Table 1 below de�nes the contract elements in detail.

both database and cryptography knowledge which a single
developer may not have. In this instance the bug would be
solved most e�ciently if individuals with the needed types
of expertise were to collaborate and share information. Fur-
thermore it has been shown that collaborative work in open
source development is often done through a process of “su-
perpositioning", where new layers of work build on existing
layers [24]. The design of our trading platform captures these
types of dynamics. Because the market allows developers
to earn credit for partial work, it incentivizes information
sharing and facilitates collaboration.

The next example describes a case where selling happens
for other reasons, such as if a user no longer wished to invest
in the contract.

Example 3.3. As before (Example 3.1), Adam ($160 for the
UNFIXED position) and Beth ($40 for FIXED position) enter
into a futures contract worth a payout of $200 in two weeks
depending on the status of bug #1337. After 2 days Adam
decides he wants his money back. He sells his UNFIXED
position of the contract to Bob. Bob buys the 200 units of
the UNFIXED position at a unit price of $0.7, paying $140 to
Adam. Adam has paid $20 for 2 days of development. Bob
pays $140 for the remaining days until maturation. Beth is
una�ected and continues developing.

Dependencies. The completion of task A may depend on
task B being completed �rst. A developer who has bought the

FIXED position of a contract on task A (with the intention to
do the work himself) might then create a new o�er to pay for
the completion of task B. Because he might not �nish task A
otherwise and lose his deposit, the new contract would have
a maturation date no later than the date for task A.

Multiple contracts. A project maintainer might need dif-
ferent features coded for a single project. He may create a
separate contract for each feature, and such that all contracts
have the same maturation date.

It is also possible to create multiple contracts for the same
issue (e.g., multiple contracts that all o�er to pay for a �x
for bug #1337), where the maturation dates and payment
amounts may be di�erent. The FIXED positions on these
contracts may be owned by the same person in order to accu-
mulate rewards for doing the work. Alternately, they may be
owned by di�erent people. Because payout at maturation de-
pends solely on the status of the issue in an issue tracker (e.g.,
has bug #1337 been marked �xed?), this scenario might give
rise to free-riding. Consider the contract with the earliest
maturation date and suppose Beth owns the FIXED position.
Clearly, Beth is incentivized to �x the issue or else she will
forfeit her escrow deposit. However, those owning FIXED
positions on the contracts with later maturation dates may
get paid on maturation without having to do any work. Be-
cause of Beth’s work the issue might already be marked as
�xed in the issue tracker. To what extent free riding may
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occur is in�uenced by many factors including the beliefs
held by participants in the market regarding the ability and
willingness of others to perform tasks. Further experiments
are needed to understand the behavior of the market in this
scenario.

Multiple buy o�ers on both FIXED and UNFIXED side can
exist for a single contract. In our design, these o�ers will
result in multiple escrows and positions on the same contract.
We acknowledge, that this may appear as an instance of
multiple contracts because several developers and funders
can havematching o�ers to create new escrows and positions
without a�ecting already existing escrows and positions.
What appears to users as multiple contracts, is implemented
as a single contract in our design.

Indemnity. Our design allows for the possibility of an in-
demnity being paid if a request is not ful�lled. This is not
unlike dominant assurance contracts where a project owner
pays agents, who accept to contribute to the production of
a public good, some amount if the project fails to secure a
minimum number of contributing agents [51].
Consider Example 3.1. Because Adam contributes $160,

Beth must contribute $40 in order to form the contract which
has a total payout of $200. If the outcome is that bug #1337 is
un�xed then Beth forfeits her $40 to Adam. In this instance
the amount that Beth must pay indicates her con�dence in
being able to ful�ll the contract.
Now suppose Adam believes that bug #1337 cannot be

�xed and would like to pro�t from this knowledge. Because
Adam is con�dent that he will recover his payment at matu-
ration, he is willing to contribute a larger fraction of the total
contract payout thereby making it easier for a developer to
accept his FIXED o�er. Thus Adam contributes $195 and Beth
accepts his o�er contributing just $5. At maturation Adam
may be proven right or he may be the means of funding a
rare solution to a hard problem. With this market design, a
belief that something cannot happen is handled the same
way as an incentive to make it happen. Aggregating all such
contracts, the market potentially creates a pool of wealth
that can be captured by innovators.

Decoupling funding from work. The payout from a futures
contract is solely dependent on the status of the issue in
the issue tracker. At maturation the owner of the position
corresponding to the issue’s status (e.g., �xed or un�xed) is
paid, regardless of who may have done the work to resolve
the issue. This decoupling can give rise to interesting sce-
narios. For instance, an investor in a software project may
put up the capital to buy a FIXED position and hire a team
of talented developers to collaborate and do the work. This
also enables someone who does bug triaging to buy FIXED
positions and �nd developers who can close the issues and

sell them the positions at a pro�t. Thus, work on open source
that is fueling the community processes can be rewarded.
Moreover, the decoupling can lead to new workplaces

where an entrepreneur hires developers to work on issues
and get them closed. The entrepreneur trades on the futures
market, following price signals, and assigns developers to
complete the work. The developers are employed and have
the bene�ts of a regular income; The entrepreneur organizes
the human resources to the issues that are valued the most
on the market place to maximize pro�t.

The decoupling may also result in cases where the worker
is not rewarded. Suppose users o�er to pay for a �x to a
particular bug, and a trader realizes that a �x is already
underway. The trader quickly buys the FIXED position and
the market gets information on the likelihood of the bug
being �xed, but the worker responsible for the �x does not
pro�t from it.

Anonymity. Market participants are anonymous. Issues
must be identi�ed in an issue tracker. The market must be
able to transfer payments between escrow and participants’
accounts. The identities of participants are not needed.

Enhancing existing open source practices. Our goal is to in-
centivize behavior without changing the development work-
�ow or forcing open source projects to adopt a di�erent
system for doing work. We integrate our marketplace with
existing issue trackers. This has several implications.

First, open source project maintainers have full autonomy
of work and make decisions on whether to close a bug or
not. The reputation and reliability of a maintainer may be a
factor for trading decisions on the marketplace.

Second, reopening bugs is a natural process in open source
development. The status of the bug for payout on the futures
market only matters at the time of contract maturation. If a
contract is closed but reopened later, the worker receives the
payout. If the bug is reopened before the contract matures
and not closed again in time, then the funder receives the
payout.

Third, disputes amongst market participants (if they reveal
their identities) can �ow over into open source projects. Sim-
ilarly, disputes in open source projects will have an in�uence
on trading behavior in the marketplace. We take a hands-o�
approach to disputes. Maintainers and developers have to
�gure out the technical details and solve any issues, regard-
less of the marketplace. However, the futures market can
increase incentives for collaborating and resolving disputes
before contracts mature.

Proof-of-concept implementation of the futures
trading platform
We substantiate our design of a futures trading platform
through a proof-of-concept implementation [25], which we
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Figure 2: Screenshot of the Bugmark user interface.

call Bugmark. We use the Ethereum blockchain because
it is the most mature for smart contracts. The bene�ts of
the blockchain is anonymity of market participants, an im-
mutable, decentralized, and audit-able record of transactions
for trust, and automation through smart contracts. The user
interface is written in HTML, CSS, and JavaScript (see Fig-
ure 2). The backend is written in Ruby and uses a PostgreSQL
database for a local copy of events. We use an event stream
architecture which allows updating the blockchain and local
database—key elements to a decentralized market design.
The implementation con�rms that our innovation works.

Futures Contract Design. An important aspect of the im-
plementation is in regards to the futures contract design. We
describe the elements of a Bugmark futures contract (see
Figure 1 and Table 1) by walking through the life of such a
contract from creation to maturation (i.e. payout). This de-
scription re�ects the process in example 3.1 to introduce the
contract elements and more complex use cases are possible.
A new contract gets formed when two buy o�ers match.

In matching o�ers for creating contracts, a bin-packing algo-
rithm is used to generate the largest possible trading volume.
The two buy o�ers for opposite sides—one for a FIXED posi-
tion, the other for an UNFIXED position—have to match in
price, volume, statement, and maturation date. Unit prices
of the buy o�ers must together equal to $1 per unit. For
example, respective unit prices of $0.20 for a FIXED posi-
tion and $0.80 for an UNFIXED position. This is important
because we standardize the contract payout to $1 per unit
and the two buy o�ers together have to pay that amount of
money into escrow. The unit price determines which share
of the $1 payout each buy o�er pays into escrow at the time
of forming the contract. Volume is how many units of this

Element Description
Statement A truth statement about whether work will

be done. For example: "Bug #1337 is �xed"
or "A high security vulnerability was found".

Maturation Date on which the oracle evaluates the State-
ment and determines contract payout.

Escrow Account with deposited money collected at
the time of contract formation.

Unit Value Standardized size of a contract: $1.
Unit Price Price for a unit ranges from $0.00 to $1.00.
Position Record of contract ownership with the right

to the payout amount from escrow when the
statement gets evaluated. The volume of a
position is the number of units the owner
bought.

Buy O�er A user indicating willingness to form a new
position or take over an existing position
for a speci�ed upper price limit and with a
speci�ed volume.

Sell O�er A user indicating willingness to sell a speci-
�ed number of existing positions for a spec-
i�ed lower price limit.

Side FIXED (FOUND) and UNFIXED (UNFOUND):
O�ers have to specify which side they are for.
On Maturation, owner of the FIXED position
gets payout on a true statement and owner
of UNFIXED on false.

Table 1: Elements of a Bugmark futures contract.

contract the users want to buy and is ultimately recorded in
positions. In other words, the volume is equal the amount of
money both buy o�ers together must pay into escrow, which
is then available for payout upon maturation. The unit price
multiplied by the volume determines the amount each user
has to pay into escrow, i.e. the total price.

A contract is primarily de�ned by the statement and mat-
uration date. For each contract, any number of escrows, posi-
tions, and o�ers can exist. This design allows users to trade
any number of units (full or partial positions) as long as they
belong to the same contract. This design enables several fun-
ders to pay for the �x or discovery of a bug and thus pool
resources necessary to incentivize di�cult tasks.

The FIXED and UNFIXED buy o�ers result in positions of
the same side: a user posting a FIXED buy o�er will receive a
FIXED position; a user posting an UNFIXED buy o�er will re-
ceive an UNFIXED position. A position embodies the right to
a payout when the statement is evaluated. The statement, e.g.
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Figure 3: (a) The top diagram “O�er Prices & Volumes”
shows over time that buy o�ers are created with varying
prices in the range from 0.00 to 1.00 (green dots) and vol-
umes in the range from 30 to 50 units (orange dots). (b) The
bottom diagram “Market Overview” shows the number of
open o�ers, number of contracts, and escrows over time.
Contracts can have multiple escrows and the contract vol-
ume can expand over time as more escrows are added. The
number of open o�ers decreases when o�ers get matched to
form a new escrow.

’bug #1337 is �xed’, is the core of a BugMark futures contract
and will be evaluated on the maturation date. The owner
of the FIXED position gets the payout when the statement
evaluates to true; UNFIXED positions get paid when the state-
ment is false. At this time, the user that holds the winning
position receives the payout from the escrow account.

Simulation
Large multi-user systems, such as Bugmark, are challenging
to design. The system is non-deterministic and evolution-
ary because the user experience depends on the decisions
of other users. Agent-based-modeling is a method to eval-
uate design decisions in such a system through computer
simulation [47].
The major bene�t of simulation is that system-level be-

havior can be observed without a need to recruit a large
number of human users, especially for testing small changes
to the design. In designing agents, we make assumptions
about how they make decisions.
For our �rst simulation2, we demonstrate that our proof-

of-concept implementation—Bugmark—works and that we
are able to collect data to evaluate design changes. In this
simulation, agents have no knowledge of the environment
and randomly choose to create buy o�ers for �xed and un-
�xed positions (see Figure 3a). The agents use the full price
range from 0.00 to 1.00 and choose volumes between 30 and
50 units. With these parameters, we have a good chance
2The simulation code is available under an open source license online:
https://github.com/bugmark/bmx_bots

that o�ers match and enter into a contract to form positions.
As positions are formed, the number of open contracts de-
creases (green line and orange line in Figure 3b). The blue
line levels o� at �ve contracts because the agents trade on
only �ve issues with the same maturation date. As more
o�ers match, however, the volume of positions on each con-
tract increases, which is shown in the increasing orange line.
With the infrastructure for agent-based-modeling built, we
can, in future work, simulate varying agent behavior and
investigate how incentives can impact the market behavior
overall. Several questions we will investigate are described
in the next section.

4 RESEARCH DIRECTIONS
The research initiated in this paper raises several interesting
questions that we plan to investigate going forward. A prac-
tical question is how to ensure market liquidity and avoid a
thinly traded market. A usability question is how to make
the market design intuitive for open source developers who
have no background in futures markets, which is important
for widespread adoption. A social question is how to ensure
that everyone gets fairly compensated, including reviewers
of code, who do not have the information advantage that
developers have because the review comes late in the devel-
opment life-cycle.

Other promising lines of research that stem from this work
are as follows:

Characteristics of the model. An insightful direction for
future work is to characterize the futures trading model
presented in this paper. How does our model compare to
other market models? Does a trading market enable new
types of tasks that were otherwise not addressed by existing
platforms? Alternately, does it allow us to perform old tasks
in new ways? What is a measure of task complexity and how
does it help to characterize di�erent models of accomplishing
work?

Consequences of the model. Our platform introduces price
signals into the peer production of software. It would be
interesting to study the consequences of introducing price
signals in peer production and explore the connection be-
tween markets and peer production. How does this market
design impact information sharing and collaboration? Does
this lead to more e�cient resource allocation, better quality
output, and result in higher utility for all participants? How
are equilibria in this market characterized? What opportuni-
ties for manipulation exist and how can they be addressed?
How can we turn those who might manipulate the market
into constructive contributors?

Extensions of the model. In future work we plan to explore
the futures market features and mechanisms in more detail.
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We would also like to consider extensions to the contract
design presented in this paper. For instance, how can the ex-
pressive power of the contract language be improved? What
kind of information might be inferred from the dynamics
of contract creation and resolution? How might techniques
from machine learning be used to improve the performance
of the market mechanism?

Security impact of the model. We hope to further investi-
gate the application of our market mechanism to software
security. Howwould our tradingmarket interact with current
secure software engineering practices? What problems in
software security might this market address? Consequently,
what types of security issues might require a di�erent mech-
anism?

5 CONCLUSION
The main contribution of this paper is a novel market design
to incentivize secure software development in peer produc-
tion communities, based on futures trading markets. The
market connects users who are willing to pay directly to
workers who are willing to work through price signals. The
core of our innovation lies in introducing price signals in
such a way as to leverage and strengthen the successful
qualities of peer production. By enabling developers to earn
credit for partial work, our market incentivizes information
sharing and facilitates collaboration. The market treats a pre-
diction that something cannot happen in the same way as an
incentive to make it happen. Thus, in aggregate, the market
creates a pool of wealth that can be captured by innovators.

We further contribute a proof-of-concept implementation
of our innovation, which con�rms the practicality of the trad-
ing market. The source code is publicly available under an
open source license.3 Preliminary simulation results demon-
strate that the implementation works as expected and can be
used for future experiments. The present paper lays a founda-
tion upon which future research may build. In ongoing work,
we are designing experiments to work with real software
project groups. Our goal is to run a series of experiments,
simulated and real-world, to test various hypotheses about
the characteristics of the system and to arrive at a deeper
understanding of the impact of the incentives design.
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